
Windows Eiffel Library Tutorial

Interactive Software Engineering, Inc.

1

The Windows Eiffel Library (WEL) has been designed to make Windows programming easier, more reliable, more
convenient, and more powerful by using Eiffel principles. The most obvious definition of WEL is that it is an
encapsulation of Windows primitives, making it possible for users of ISE’s Graphical Eiffel for Windows to have
direct access to the Windows graphical API.

This tutorial1 requires some knowledge of Eiffel 3 (the language), EiffelBase (ISE's basic libraries) and EiffelBench
(ISE's Programming Environment). Your knowledge of Windows Software Developers Kit will be helpful but not
necessary.

In the upcoming chapters, you will build a graphical, interactive Windows program, complete with menus, file
saving and loading, graphic and text drawing. On the way, you will be introduced to the major principles of
Windows application design, such as message processing, managing a device context, using dialog boxes, and
automatic graphics redrawing.

This walk-through consists of eight steps:

• Step 1: Creating an application
• Step 2: Defining a main window class
• Step 3: Drawing text in a window
• Step 4: Drawing lines in a window
• Step 5: Changing line thickness
• Step 6: Repainting a window
• Step 7: Adding a menu
• Step 8: Storing the drawing in a file

Figure 1 shows the application you will have created at the end of this manual.

Figure 1

The source code for the application is provided at various stages on the distribution disk. The directories in
$EIFFEL3\EXAMPLES\WEL\TUTORIAL are named STEP1, STEP2 and so on, corresponding to the steps in the
tutorial.

1 This tutorial is also available on our WEB site at
http://www.eiffel.com/doc/manuals/technology/wel/tutorial/index.html.

2

Step 1: Creating an application

All Windows programs have a window called main window that appears when the user starts the program. In
WEL, this window is owned by the application which is responsible for creating and displaying the main window,
processing Windows messages and terminating the application.

Every WEL application must define its own descendant of WEL_APPLICATION in order to define the deferred
function main_window as follows:

class
APPLICATION

inherit
WEL_APPLICATION

creation
make

feature

main_window: WEL_FRAME_WINDOW is
-- Create the application's main window.

once
!! Result.make_top ("My application")

end ;

end -- class APPLICATION

This class is the minimal WEL application, if you run it you will get an empty frame window that can be moved,
resized, maximized, minimized and closed. Figure 2 shows the appearance of the application.

Figure 2

3

Step 2: Defining a main window class

In this step, you will learn how to define your window type for the main window, including application-specific
behavior and appearance. You will create a more specialized main window class which is descending from
WEL_FRAME_WINDOW.

The quickest way to make a window useful is to explain it how to respond to Windows messages. For example,
when the user clicks the left mouse button in the main window of My application, the corresponding window object
receives a Wm_lbuttondown message from Windows. This tells the window object that the user clicked the mouse in
it. It also passes the coordinates of the point where the user clicked. To intercept and respond to Windows
messages, WEL defines several procedures corresponding to the most common Windows messages. For instance,
WEL_WINDOW has a procedure named on_left_button_down corresponding to the Wm_lbuttondown message. To
respond to the message, you just need to redefine this procedure as follows:

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Display a message box when the user presses the
-- the left mouse button.

do
information_message_box ("You have pressed the left mouse button.",

"Message received")
end ;

Since you have defined a customized main window class, you have to change the main_window function in
APPLICATION in order to return an instance of MAIN_WINDOW. Class APPLICATION must be defined as
follows:

class
APPLICATION

inherit
WEL_APPLICATION

creation
make

feature

main_window: MAIN_WINDOW is
-- Create the application's main window.

once
!! Result.make

end ;

end -- class APPLICATION

Figure 3 shows the message box displayed when the user clicks in the main window.

4

Figure 3

The program created here closes when the user clicks on the system close box. But in serious applications, you may
want to change this default behavior, for instance, to ask the user if he wants to save his work. WEL provides an
easy way to do that, you just need to redefine the boolean function closeable to perform tests and actions needed. If
you return True (which is the default value) the user will be able to close the window, otherwise the user will be
unable to close it. A possible implementation could be the following:

closeable: BOOLEAN is
-- Does the user want to quit?

do
Result := question_message_box ("Do you want to quit?", "Quit")

end ;

5

Here is the full source code of MAIN_WINDOW:

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_left_button_down, closeable

end

creation
make

feature { NONE} -- Initialization

make is
-- Make the main window.

do
make_top ("My application")

end ;

feature { NONE} -- Implementation

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Display a message box when the user presses the
-- the left mouse button.

do
information_message_box ("You have pressed the left mouse button.",

"Message received")
end ;

closeable: BOOLEAN is
-- Does the user want to quit?

do
Result := question_message_box ("Do you want to quit?", "Quit")

end ;

end -- class MAIN_WINDOW

6

Step 3: Drawing text in a window

In the next sections, you will learn how to draw lines in the window, change the thickness of the lines, and finally
save the contents of the window into a file for reloading later on. But first and to make things simple, you will learn
to draw text in a window.

To provide applications with graphic functionality, Windows has a set of functions called the Graphic Device
Interface, or GDI. The GDI is the graphic engine that Windows applications use to display and manipulate
graphics. To draw text, lines, or figures in a window, you need to use a device context given by the GDI. A device
context is a virtual surface with associated attributes, such as a pen, brush, font, background color, text color and
current position. When you call GDI functions to draw on a device context, the device driver associated with that
device context translates that drawing action into appropriate commands. These commands reproduce the drawing
action as accurately as possible on the device context, regardless of the display's capabilities. The display might be a
low-resolution monochrome screen, a two-million color screen or a printer. In other words, all devices supported by
Windows.

To make things more interesting in your program, instead of bringing up a message box, you will respond by
drawing text that shows the coordinates of the point where you clicked on the window. The new version of
on_left_button_down will be defined as follows:

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Write x_pos and y_pos when the user presses
-- the left mouse button.

local
position: STRING

do
position := "(";
position.append_integer (x_pos);
position.append (", ");
position.append_integer (y_pos);
position.extend (')');
dc.get;
dc.text_out (x_pos, y_pos, position);
dc.release

end ;

You also need to add a new attribute in class MAIN_WINDOW which is:

dc: WEL_CLIENT_DC;
-- Device context associated to the current
-- client window

The make routine needs to be modified in order to create dc as follows:

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current)

end ;

Figure 4 shows the result after several clicks.

7

Figure 4

One more function you can add to the application is clearing the window. The window will be cleared when a right
mouse button is clicked. To implement this, redefine on_right_button to call invalidate which causes the whole
window to be repainted. Since your window does not yet know how to repaint itself, it just clears its client area.

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Invalidate window.

do
invalidate

end ;

8

The full code of MAIN_WINDOW is:

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_left_button_down, on_right_button_down, closeable

end

creation
make

feature { NONE} -- Initialization

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current)

end ;

feature -- Access

dc: WEL_CLIENT_DC;
-- Device context associated to the current
-- client window

feature { NONE} -- Implementation

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Write x_pos and y_pos when the user presses
-- the left mouse button.

local
position: STRING

do
position := "(";
position.append_integer (x_pos);
position.append (", ");
position.append_integer (y_pos);
position.extend (')');
dc.get;
dc.text_out (x_pos, y_pos, position);
dc.release

end ;

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Invalidate window.

do
invalidate

end ;

closeable: BOOLEAN is

9

-- Does the user want to quit?
do

Result := question_message_box ("Do you want to quit?", "Quit")
end ;

end -- class MAIN_WINDOW

10

Step 4: Drawing lines in a window

In the next few steps, you will build a simple painting program that lets the user draw on the main window. You
will do the following steps:

1. Respond to left button clicks and drag by connecting the dots, resulting drawn lines.
2. Respond to the right click by bringing up an input dialog, allowing the user to change the thickness of the line.
3. Automatically redraw the window's contents by storing the points and redrawing them in response to a paint

message.

Typically, a window will receive one left button down message, followed by a series of mouse move messages (one
for each point dragged over), then followed by a single left button up message. The drawing model will be
implemented as follows:

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos)

end
end ;

on_mouse_move (keys, x_pos, y_pos: INTEGER) is
-- Connect the points to make lines.

do
if button_down then

dc.line_to (x_pos, y_pos)
end

end ;

on_left_button_up (keys, x_pos, y_pos: INTEGER) is
-- Terminate the drawing process.

do
if button_down then

button_down := false ;
dc.release

end
end ;

Attribute button_down has been introduced to draw the lines only when the user moves the mouse while the button
is down.

button_down: BOOLEAN;
-- Is the left mouse button down?

11

Figure 5 shows what the application can do.

Figure 5

12

Here is the full text of MAIN_WINDOW:

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_left_button_down, on_left_button_up,
on_right_button_down, on_mouse_move,
closeable

end

creation
make

feature { NONE} -- Initialization

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current)

end ;

feature -- Access

dc: WEL_CLIENT_DC;
-- Device context associated to the current
-- client window

button_down: BOOLEAN;
-- Is the left mouse button down?

feature { NONE} -- Implementation

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos)

end
end ;

on_mouse_move (keys, x_pos, y_pos: INTEGER) is
-- Connect the points to make lines.

do
if button_down then

dc.line_to (x_pos, y_pos)
end

end ;

13

on_left_button_up (keys, x_pos, y_pos: INTEGER) is
-- Terminate the drawing process.

do
if button_down then

button_down := false ;
dc.release

end
end ;

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Invalidate window.

do
invalidate

end ;

closeable: BOOLEAN is
-- Does the user want to quit?

do
Result := question_message_box ("Do you want to quit?", "Quit")

end ;

end -- class MAIN_WINDOW

14

Step 5: Changing line thickness

At this point, you can draw only thin lines. In order to change line thickness, you have to change the thickness of
the pen the application use to draw lines. In this step, you will learn how to set new tools in a display context and
how to create a dialog box.

You will use a dialog box to provide a mechanism for the user to change the line thickness. Figure 6 shows the
dialog box.

Figure 6

There are 2 methods to include a dialog box in your application:

• Using resources
• Writing Eiffel code

The first method consists of using Windows resources capabilities works only with the Professional version of ISE
Eiffel since resources are linked to the program's executable file. This solution needs a linker, a resource compiler
and a resource editor which are shipped with your C-compiler. Resources compilation process is completely
integrated to Professional ISE Eiffel 3 for Windows and fully transparent for the user. You just need to put a
resource file in the project directory, start a Freeze (or Finalize) operation, and EiffelBench does the rest. In a
nutshell, the freeze or finalization process will automatically copy the resource file from the project directory into
the \EIFGEN\[W|F]_CODE directory and will link it to the executable file. Once the resource file is linked to your
executable you can just Melt your project. You will need to Freeze again if you change or add any resources. This
method is much easier and quicker than the second because it is usually easier to use a visual tool to design a dialog
box or a menu instead of writing Eiffel code. One of the most important advantages of resources is that you can
change them without touching Eiffel code. It is clear that this is the preferred method if you are a Professional ISE
Eiffel 3 for Windows user. You will see later in details how to create and use a resource file in WEL.

The second method consists of writing an Eiffel class which creates each visual component of the dialog box with
the right positions and dimensions. Typically, if you use Personal ISE Eiffel 3 for Windows you will choose this
method since the Personal version does not allow to produce a stand-alone executable file.

Both methods will be explain in details in the following sections.

Method 1: Using resources

Resources are data stored in a program's executable file, but stored separately from the program's normal data
segment. Typically, Windows leaves resources on disk when it loads an application into memory, and loads
individual resources as it needs them during execution. You've probably noticed dynamic loading of resources when
working with Windows programs. When you invoke a program's dialog box for the first time, Windows usually
accesses the disk to copy the dialog box resource from the program's .EXE file into memory. Of course, if you want
the resource to be loaded when the program is loaded, or if you don't want Windows to be able to discard the
resource from memory, you can change its attributes (for more details, see your resource editor manual). These are
the resources you will create and use most often:

15

• Menus
• Dialog boxes
• Icons
• Cursors
• Keyboard accelerators
• Bitmaps
• Character strings

You can create resources visually using a resource editor as Borland Resource Workshop, Microsoft Developer
Studio, or Watcom resource editor. See your resource editor manual to learn how to create a resource file.

For instance, Figure 7 shows Borland Resource Workshop after the dialog box thickness has been created and
Figure 8 shows the same with Microsoft Developer Studio.

Figure 7

16

Figure 8

No matter what resource editor tool you want to use to design the line thickness dialog box, you should obtain a
resource file like the following (app.rc).

#include <windows.h>

#define DLG_LINE_THICKNESS 1
#define IDC_EDIT_WIDTH 101

DLG_LINE_THICKNESS DIALOG 98, 38, 124, 49
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Line thickness"
FONT 8, "MS Sans Serif"
{

LTEXT "&Width", -1, 9, 12, 22, 8
EDITTEXT IDC_EDIT_WIDTH, 9, 22, 30, 12, WS_BORDER | WS_GROUP | WS_TABSTOP
DEFPUSHBUTTON "OK", IDOK, 65, 8, 50, 14, BS_DEFPUSHBUTTON | WS_GROUP | WS_TABSTOP
PUSHBUTTON "Cancel", IDCANCEL, 65, 26, 50, 14, WS_GROUP | WS_TABSTOP

}

The DIALOG statement defines a window that an application can use to create dialog boxes. The statement defines
the position and dimensions of the dialog box on the screen as well as the dialog box style. control-statement
defines the controls of the dialog box.

17

nameID DIALOG [load-mem] x, y, width, height
[optional-statements]
BEGIN

control-statement
 . . .

END

Important note: The resource file needs to be present in the project directory and its name must be the same as the
system name specified in the Ace file with the .RC extension.

As you see at the beginning of the resource file, two identifiers (DLG_LINE_THICKNESS and
IDC_EDIT_WIDTH) are declared. You will use them to identify the dialog box and the edit control since a
resource file may contain several dialog boxes and one dialog box may contains several controls. WEL provides a
simple tool to extract identifiers from a resource file (.RC) or a header file (.H) to make an Eiffel class which
contains a set of constants. If you change or add any identifiers in the resource file, make sure to update your Eiffel
class as well. After running this tool named H2E (available in $EIFFEL3\UTIL) with your resource file, you will
obtain the following class:

indexing
description: "Generated by h2e from the file C:\Eiffel3\examples\wel\tutorial\step5\app.rc."

class
APPLICATION_IDS

feature -- Access

Dlg_line_thickness: INTEGER is 1;

Idc_edit_width: INTEGER is 101;

end -- class APPLICATION_IDS

Figure 9 shows the values entered in H2E in order to obtain the above file.

Figure 9

Note: If you use Microsoft Developer Studio, identifiers are saved in file `resource.h'. In this case, specify this file
and not the resource file.

18

Now, you will learn how to make the connection between this dialog box specified in the resource file and your
application. You will create a new class inherited from the class WEL_MODAL_DIALOG to load and use the line
thickness dialog box. This class will do the following tasks:

• Load the dialog box from the resource and create an edit control. See make routine.
• Set the single line edit control Width with the value previously entered by the user (The first time, this value

will be equal to 1). See setup_dialog routine.
• If the new width entered by the user is a valid integer, save the value in pen_width and terminate the dialog

box. See on_ok routine.

19

The full text of this class is: (Note that the class APPLICATION_IDS generated by H2E is added in the inheritance
clause.)

class
LINE_THICKNESS_DIALOG

inherit
WEL_MODAL_DIALOG

redefine
on_ok, setup_dialog

end ;
APPLICATION_IDS

export
{ NONE} all

end

creation
make

feature { NONE} -- Initialization

make (a_parent: WEL_COMPOSITE_WINDOW) is
-- Make the dialog box and create edit.

do
make_by_id (a_parent, Dlg_line_thickness);
!! edit.make_by_id (Current, idc_edit_width);
pen_width := 1

end ;

feature -- Access

edit: WEL_SINGLE_LINE_EDIT;
-- Edit control to enter pen width

pen_width: INTEGER;
-- Pen width entered

feature { NONE} -- Implementation

setup_dialog is
-- Set the width previously entered.

local
s: STRING

do
!! s.make (0);
s.append_integer (pen_width);
edit.set_text (s)

end ;

on_ok is
-- Ensure edit value is an integer, save it in
-- pen_width and close the dialog box.

do
if edit.text.is_integer then

20

pen_width := edit.text.to_integer;
terminate (idok)

end
end ;

end -- class LINE_THICKNESS_DIALOG

21

Method 2: Writing Eiffel code

If you use Personal ISE Eiffel, you need to create the following class:

class
LINE_THICKNESS_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_control_command

end

creation
make

feature { NONE} -- Initialization

make (a_parent: WEL_COMPOSITE_WINDOW) is
-- Make the line thickness window.

do
make_child (a_parent, "Line thickness");
move_and_resize (20, 20, 210, 104, true);
!! static.make (Current, "Width", 14, 18, 38, 13, - 1);
!! edit.make (Current, "", 14, 33, 52, 19, - 1);
!! ok_button.make (Current, "OK", 98, 12, 87, 23, - 1);
!! cancel_button.make (Current, "Cancel", 98, 45, 87, 23, - 1);
pen_width := 1

end ;

feature -- Access

edit: WEL_SINGLE_LINE_EDIT;
-- Edit control to enter pen width

ok_button: WEL_PUSH_BUTTON;
-- Button to validate the value

cancel_button: WEL_PUSH_BUTTON;
-- Button to cancel the value

static: WEL_STATIC;
-- "Width" static text

pen_width: INTEGER;
-- Pen width entered

feature -- Basic operations

activate is
-- Activate the window

local
s: STRING

22

do
!! s.make (0);
s.append_integer (pen_width);
edit.set_text (s);
show

end ;

feature { NONE} -- Implementation

on_control_command (control: WEL_CONTROL) is
-- Process ok_button and cancel_button selection.

local
p: MAIN_WINDOW

do
if control = ok_button then

if edit.text.is_integer then
pen_width := edit.text.to_integer;
p ?= parent;
if p /= void then

p.set_pen_width (pen_width)
end ;
hide

end
elseif control = cancel_button then

hide
end

end ;

end -- class LINE_THICKNESS_WINDOW

In order to be able to change line thickness in the device context, you need to add the following attribute:

pen: WEL_PEN;
-- Pen currently selected in dc

You also have to set the default pen width in the make routine:

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current);
set_pen_width (1)

end ;

The implementation of set_pen_width is defined as follows:

set_pen_width (new_width: INTEGER) is
-- Set pen width with new_width.

do
!! pen.make_solid (new_width, black)

end ;

23

The black color can be retrieved from the class WEL_STANDARD_COLORS which must be added in the
inheritance clause.

You have to insert a call to select_pen in the routine on_left_button_down as follows. Selecting a pen for a device
context will allow you to use a different pen than the default one.

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos);
dc.select_pen (pen)

end
end ;

The new version of on_right_button will now bring up the dialog box:

According the version you use, you need to update the MAIN_WINDOW class in order to bring up the line thickness
dialog box or window when the user pushes on the right button. If you use Professional ISE Eiffel 3 for Windows,
you need to add a new attribute line_thickness_dialog and change the body of on_right_button_down as follows:

line_thickness_dialog: LINE_THICKNESS_DIALOG;
-- Dialog box to change line thickness

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Bring up line_thickness_dialog and set the
-- new pen width.

do
if line_thickness_dialog = void then

!! line_thickness_dialog.make (Current)
end ;
line_thickness_dialog.activate;
if line_thickness_dialog.ok_pushed then

set_pen_width (line_thickness_dialog.pen_width)
end

end ;

On the other hand, if you use Personal ISE Eiffel for Windows, you need to add a new attribute
line_thickness_dialog and change the body of on_right_button_down as follows:

line_thickness_window: LINE_THICKNESS_WINDOW;
-- Window to change line thickness

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Bring up line_thickness_window and set the
-- new pen width.

do
if line_thickness_window = void then

!! line_thickness_window.make (Current)
end ;
line_thickness_window.activate

end ;

24

Figure 10 shows the new capabilities of your application:

Figure 10

25

This is the full text of MAIN_WINDOW (Professional version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_left_button_down, on_left_button_up,
on_right_button_down, on_mouse_move,
closeable

end ;
WEL_STANDARD_COLORS

export
{ NONE} all

end

creation
make

feature { NONE} -- Initialization

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current);
set_pen_width (1)

end ;

feature -- Access

dc: WEL_CLIENT_DC;
-- Device context associated to the current
-- client window

button_down: BOOLEAN;
-- Is the left mouse button down?

pen: WEL_PEN;
-- Pen currently selected in dc

line_thickness_dialog: LINE_THICKNESS_DIALOG;
-- Dialog box to change line thickness

feature -- Element change

set_pen_width (new_width: INTEGER) is
-- Set pen width with new_width.

do
!! pen.make_solid (new_width, black)

end ;

feature { NONE} -- Implementation

26

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos);
dc.select_pen (pen)

end
end ;

on_mouse_move (keys, x_pos, y_pos: INTEGER) is
-- Connect the points to make lines.

do
if button_down then

dc.line_to (x_pos, y_pos)
end

end ;

on_left_button_up (keys, x_pos, y_pos: INTEGER) is
-- Terminate the drawing process.

do
if button_down then

button_down := false ;
dc.release

end
end ;

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Bring up line_thickness_dialog and set the
-- new pen width.

do
if line_thickness_dialog = void then

!! line_thickness_dialog.make (Current)
end ;
line_thickness_dialog.activate;
if line_thickness_dialog.ok_pushed then

set_pen_width (line_thickness_dialog.pen_width)
end

end ;

closeable: BOOLEAN is
-- Does the user want to quit?

do
Result := question_message_box ("Do you want to quit?", "Quit")

end ;

end -- class MAIN_WINDOW

27

This is the full text of MAIN_WINDOW (Personal version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_left_button_down, on_left_button_up,
on_right_button_down, on_mouse_move,
closeable

end ;
WEL_STANDARD_COLORS

export
{ NONE} all

end

creation
make

feature { NONE} -- Initialization

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current);
set_pen_width (1)

end ;

feature -- Access

dc: WEL_CLIENT_DC;
-- Device context associated to the current
-- client window.

button_down: BOOLEAN;
-- Is the left mouse button down?

pen: WEL_PEN;
-- Pen currently selected in dc.

line_thickness_window: LINE_THICKNESS_WINDOW;
-- Window to change line thickness.

feature -- Element change

set_pen_width (new_width: INTEGER) is
-- Set pen width with new_width.

do
!! pen.make_solid (new_width, black)

end ;

feature { NONE} -- Implementation

28

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos);
dc.select_pen (pen)

end
end ;

on_mouse_move (keys, x_pos, y_pos: INTEGER) is
-- Connect the points to make lines.

do
if button_down then

dc.line_to (x_pos, y_pos)
end

end ;

on_left_button_up (keys, x_pos, y_pos: INTEGER) is
-- Terminate the drawing process.

do
if button_down then

button_down := false ;
dc.release

end
end ;

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Bring up line_thickness_window and set the
-- new pen width.

do
if line_thickness_window = void then

!! line_thickness_window.make (Current)
end ;
line_thickness_window.activate

end ;

closeable: BOOLEAN is
-- Does the user want to quit?

do
Result := question_message_box ("Do you want to quit?", "Quit")

end ;

end -- class MAIN_WINDOW

29

Step 6: Repainting a window

As you have probably noticed, the graphics and text you draw in a window using device context functions (like
line_to or text_out) disappear when you resize or uncover the window. Windows does not save the graphics that you
draw in the device context, the application is in charge to refresh the window when it is necessary. In this step you
will learn how to do that.

When the user of your application resizes or uncovers a window, it requires updating, or painting. WEL
automatically calls the on_paint procedure (from WEL_COMPOSITE_WINDOW) when the window needs to be
painted. Procedure on_paint is where you write the code to paint the contents of the window. There is one major
difference between drawing graphics in the on_paint procedure and at other times, such as in response to mouse
actions. The device context to be used for painting is passed in the paint_dc parameter, so your program does not
need to get and release it. You will, however, need to select your drawing tools into the paint_dc.

To paint a window's contents, you are going to replay the actions that led to the original drawing on dc, but use
paint_dc instead. But first, you need to store the graphic as objects, so you can paint them in the on_paint
procedure.

Let's say that the window's contents is a set of lines, and each line is a set of points with a width. Then, you can
simply define a line as follows:

30

class
LINE

inherit
LINKED_LIST [POINT]

creation
make

feature -- Access

width: INTEGER;
-- Width of the line

feature -- Element change

set_width (a_width: INTEGER) is
-- Set width with a_width.

require
positive_width: a_width >= 0

do
width := a_width

ensure
width_set: width = a_width

end ;

add (x, y: INTEGER) is
-- Add a point specified by x and y.

local
p: POINT

do
!! p.make (x, y);
extend (p)

end ;

invariant
positive_width: width >= 0;

end -- class LINE

31

Class POINT is simply defined as follows:

class
POINT

creation
make

feature -- Initialization

make (a_x, a_y: INTEGER) is
-- Make a point with a_x and a_y.

do
x := a_x;
y := a_y

ensure
x_set: x = a_x;
y_set: y = a_y

end ;

feature -- Access

x: INTEGER;
-- x position

y: INTEGER;
-- y position

end -- class POINT

Using class LINE, the basic idea consists of saving mouse movements while the user draws. Then, you will use
these data in the on_paint procedure to redraw window's contents. First, you need to add the following attributes in
class MAIN_WINDOW.

lines: LINKED_LIST [LINE];
-- All lines drawn by the user

current_line: LINE;
-- Line currently drawn by the user

Attribute lines needs to be created in the make routine as follows:

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current);
set_pen_width (1);
!! lines.make

end ;

And finally, you have to change on_left_button_down and on_mouse_move to store the points in lines.

32

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos);
dc.select_pen (pen);
!! current_line.make;
current_line.set_width (pen.width);
lines.extend (current_line);
current_line.add (x_pos, y_pos)

end
end ;

on_mouse_move (keys, x_pos, y_pos: INTEGER) is
-- Connect the points to make lines.

do
if button_down then

dc.line_to (x_pos, y_pos);
current_line.add (x_pos, y_pos)

end
end ;

33

At this point, lines has all the information needed to redraw the window's contents. Basically, you just need to
redefine on_paint and iterate over the list to draw the lines as follows:

on_paint (paint_dc: WEL_PAINT_DC; invalid_rect: WEL_RECT) is
-- Paint the lines.

local
a_line: LINE;
a_pen: WEL_PEN;
first_point: BOOLEAN

do
from

lines.start
until

lines.off
loop

from
first_point := true ;
a_line := lines.item;
a_line.start;
!! a_pen.make_solid (a_line.width, black);
paint_dc.select_pen (a_pen)

until
a_line.off

loop
if first_point then

first_point := false ;
paint_dc.move_to (a_line.item.x, a_line.item.y)

else
paint_dc.line_to (a_line.item.x, a_line.item.y)

end ;
a_line.forth

end ;
lines.forth

end
end ;

Now, if you minimize and restore the window, you will see that window's contents is restored.

34

Here is the full text of MAIN_WINDOW (Professional version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_left_button_down, on_left_button_up,
on_right_button_down, on_mouse_move,
on_paint, closeable

end ;
WEL_STANDARD_COLORS

export
{ NONE} all

end

creation
make

feature { NONE} -- Initialization

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current);
set_pen_width (1);
!! lines.make

end ;

feature -- Access

dc: WEL_CLIENT_DC;
-- Device context associated to the current
-- client window

button_down: BOOLEAN;
-- Is the left mouse button down?

pen: WEL_PEN;
-- Pen currently selected in dc

line_thickness_dialog: LINE_THICKNESS_DIALOG;
-- Dialog box to change line thickness

lines: LINKED_LIST [LINE];
-- All lines drawn by the user

current_line: LINE;
-- Line currently drawn by the user

feature -- Element change

35

set_pen_width (new_width: INTEGER) is
-- Set pen width with new_width.

do
!! pen.make_solid (new_width, black)

end ;

feature { NONE} -- Implementation

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos);
dc.select_pen (pen);
!! current_line.make;
current_line.set_width (pen.width);
lines.extend (current_line);
current_line.add (x_pos, y_pos)

end
end ;

on_mouse_move (keys, x_pos, y_pos: INTEGER) is
-- Connect the points to make lines.

do
if button_down then

dc.line_to (x_pos, y_pos);
current_line.add (x_pos, y_pos)

end
end ;

on_left_button_up (keys, x_pos, y_pos: INTEGER) is
-- Terminate the drawing process.

do
if button_down then

button_down := false ;
dc.release

end
end ;

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Bring up line_thickness_dialog and set the
-- new pen width.

do
if line_thickness_dialog = void then

!! line_thickness_dialog.make (Current)
end ;
line_thickness_dialog.activate;
if line_thickness_dialog.ok_pushed then

set_pen_width (line_thickness_dialog.pen_width)
end

end ;

36

on_paint (paint_dc: WEL_PAINT_DC; invalid_rect: WEL_RECT) is
-- Paint the lines.

local
a_line: LINE;
a_pen: WEL_PEN;
first_point: BOOLEAN

do
from

lines.start
until

lines.off
loop

from
first_point := true ;
a_line := lines.item;
a_line.start;
!! a_pen.make_solid (a_line.width, black);
paint_dc.select_pen (a_pen)

until
a_line.off

loop
if first_point then

first_point := false ;
paint_dc.move_to (a_line.item.x, a_line.item.y)

else
paint_dc.line_to (a_line.item.x, a_line.item.y)

end ;
a_line.forth

end ;
lines.forth

end
end ;

closeable: BOOLEAN is
-- Does the user want to quit?

do
Result := question_message_box ("Do you want to quit?", "Quit")

end ;

end -- class MAIN_WINDOW

37

Here is the full text of MAIN_WINDOW (Personal version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW

redefine
on_left_button_down, on_left_button_up,
on_right_button_down, on_mouse_move,
on_paint, closeable

end ;
WEL_STANDARD_COLORS

export
{ NONE} all

end

creation
make

feature { NONE} -- Initialization

make is
-- Make the main window.

do
make_top ("My application");
!! dc.make (Current);
set_pen_width (1);
!! lines.make

end ;

feature -- Access

dc: WEL_CLIENT_DC;
-- Device context associated to the current
-- client window

button_down: BOOLEAN;
-- Is the left mouse button down?

pen: WEL_PEN;
-- Pen currently selected in dc

line_thickness_window: LINE_THICKNESS_WINDOW;
-- Window to change line thickness

lines: LINKED_LIST [LINE];
-- All lines drawn by the user

current_line: LINE;
-- Line currently drawn by the user

feature -- Element change

38

set_pen_width (new_width: INTEGER) is
-- Set pen width with new_width.

do
!! pen.make_solid (new_width, black)

end ;

feature { NONE} -- Implementation

on_left_button_down (keys, x_pos, y_pos: INTEGER) is
-- Initiate the drawing process.

do
if not button_down then

button_down := true ;
dc.get;
dc.move_to (x_pos, y_pos);
dc.select_pen (pen);
!! current_line.make;
current_line.set_width (pen.width);
lines.extend (current_line);
current_line.add (x_pos, y_pos)

end
end ;

on_mouse_move (keys, x_pos, y_pos: INTEGER) is
-- Connect the points to make lines.

do
if button_down then

dc.line_to (x_pos, y_pos);
current_line.add (x_pos, y_pos)

end
end ;

on_left_button_up (keys, x_pos, y_pos: INTEGER) is
-- Terminate the drawing process.

do
if button_down then

button_down := false ;
dc.release

end
end ;

on_right_button_down (keys, x_pos, y_pos: INTEGER) is
-- Bring up line_thickness_window and set the
-- new pen width.

do
if line_thickness_window = void then

!! line_thickness_window.make (Current)
end ;
line_thickness_window.activate

end ;

on_paint (paint_dc: WEL_PAINT_DC; invalid_rect: WEL_RECT) is
-- Paint the lines.

local

39

a_line: LINE;
a_pen: WEL_PEN;
first_point: BOOLEAN

do
from

lines.start
until

lines.off
loop

from
first_point := true ;
a_line := lines.item;
a_line.start;
!! a_pen.make_solid (a_line.width, black);
paint_dc.select_pen (a_pen)

until
a_line.off

loop
if first_point then

first_point := false ;
paint_dc.move_to (a_line.item.x, a_line.item.y)

else
paint_dc.line_to (a_line.item.x, a_line.item.y)

end ;
a_line.forth

end ;
lines.forth

end
end ;

closeable: BOOLEAN is
-- Does the user want to quit?

do
Result := question_message_box ("Do you want to quit?", "Quit")

end ;

end -- class MAIN_WINDOW

40

Step 7: Adding a menu

Most Windows applications have a menu on their main window to provide a variety of selections for the user. In
this section, you will add a menu to the program. Figure 11 shows the menus that you will add.

Figure 11

Like dialog boxes, you have two ways to add a menu: using resources or writing Eiffel code. Once again, both
solutions will be presented for the Professional and Personal users.

Method 1: Using resources

Resource editors provide a very easy way to design menus visually. For instance, Figure 12 shows Borland
Resource Workshop's menu module.

Figure 12

41

After adding the menus in app.rc, the following text will be added to the file.

#define MAIN_MENU_ID 1
#define CMD_NEW 101
#define CMD_OPEN 102
#define CMD_SAVE 103
#define CMD_EXIT 104
#define CMD_LINE_THICKNESS 105

MAIN_MENU_ID MENU
{

POPUP "&File"
{

MENUITEM "&New", CMD_NEW
MENUITEM "&Open...", CMD_OPEN
MENUITEM "&Save...", CMD_SAVE
MENUITEM SEPARATOR
MENUITEM "E&xit", CMD_EXIT

}
POPUP "&Line"
{

MENUITEM "Line &thickness...", CMD_LINE_THICKNESS
}

}

The value of MAIN_MENU_ID, which identifies the menu, will be used in Eiffel to load the menu. Menu item
identifiers (as CMD_NEW, CMD_OPEN) will be used to identify options selected by the user. Don't forget to
update class APPLICATION_IDS using H2E since new identifiers have been added in the resource file.

Now, you need to add the following once function to load the menu:

main_menu: WEL_MENU is
-- Window's menu

once
!! Result.make_by_id (Main_menu_id)

end ;

Class APPLICATION_IDS needs to be added in the inheritance clause of MAIN_WINDOW to use Main_menu_id.

42

Method 2: Writing Eiffel code

If you can't use a resource editor, you have to create the menu using WEL_MENU's procedures as follows:

main_menu: WEL_MENU is
-- Window's menu

local
file, line: WEL_MENU

once
!! file.make;
file.append_string ("&New", Cmd_new);
file.append_string ("&Open...", Cmd_open);
file.append_string ("&Save...", Cmd_save);
file.append_separator;
file.append_string ("E&xit", Cmd_exit);
!! line.make;
line.append_string ("Line &thickness...", Cmd_line_thickness);
!! Result.make;
Result.append_popup (file, "&File");
Result.append_popup (line, "&Line")

end ;

Cmd_new: INTEGER is 101;
Cmd_open: INTEGER is 102;
Cmd_save: INTEGER is 103;
Cmd_exit: INTEGER is 104;
Cmd_line_thickness: INTEGER is 105;

Basically, the function creates two popup menus (File and Line) and add them to the main menu. Procedure
append_string expects two arguments which are an item name (STRING) and an unique identifier (INTEGER).
Optional character "&" identifies the hot key of the option.

No matter which method you use, now you need to set the menu for the window in the MAIN_WINDOW's make
routine as follows:

set_menu (main_menu)

Figure 13 shows the menu how it appears in the menu window.

43

Figure 13

At this point, choosing an option in the menu does not perform any task. In order to process menu commands, you
have to redefine on_menu_command from WEL_COMPOSITE_WINDOW. This procedure has an INTEGER
argument which identifies the option selected by the user (the same as you have specified in the resources or in
main_menu function).

A very basic implementation of on_menu_command could be the following:

on_menu_command (menu_id: INTEGER) is
-- menu_id has been selected.

do
inspect

menu_id
when Cmd_new then

warning_message_box ("Feature not implemented.", "New")
when Cmd_open then

warning_message_box ("Feature not implemented.", "Open")
when Cmd_save then

warning_message_box ("Feature not implemented.", "Save")
when Cmd_exit then

warning_message_box ("Feature not implemented.", "Exit")
when Cmd_line_thickness then

warning_message_box ("Feature not implemented.", "Line thickness")
end

end ;

For instance, if you choose option New in the File menu, Figure 14 shows what you will get.

44

Figure 14

To make things more interesting, the application will process New option as it should be: Delete all the lines and
forces a repainting of the screen. Since there are no lines to redraw, the screen becomes blank. Replace the call to
warning_message_box by the following code:

when Cmd_new then
lines.wipe_out;
invalidate

It is easy to respond to the Exit selection by destroying the main window as follows:

when Cmd_exit then
if closeable then

destroy
end

You can also move the code from on_right_button_down which brings up line thickness dialog box to
on_menu_command to respond to the Line thickness selection (identifier Cmd_line_thickness).

45

Step 8: Storing the drawing in a file

Since that you have got a data representation of the drawing, you should be able to transfer that data into a file and
read it back. You will also use standard dialog boxes to get file names from the user.

You are going to use class STORABLE from EiffelBase to save and read data of the drawing. But first, you need to
create the following abstraction in order to be able to save the linked list of points.

class
LINES

inherit
LINKED_LIST [LINE];
STORABLE

creation
make

end -- class LINES

In MAIN_WINDOW you need to change the definition of lines from:

lines: LINKED_LIST [LINE];

into:

lines: LINES;

The application will show standard dialog boxes in response to the user's selection of Open and Save to get the file
name which will be used for the operation. The following attributes need to be added in MAIN_WINDOW:

open_dialog: WEL_OPEN_FILE_DIALOG;
-- Standard dialog box to open a file.

save_dialog: WEL_SAVE_FILE_DIALOG;
-- Standard dialog box to save a file.

46

Now, you are ready to implement Open and Save options in on_menu_command. Basically, the file name is
retrieved from the standard dialog box and used to save (store_by_name) or read (retrieve_by_name) the data.
Extension .DRW is adopted for the files (procedures set_filter and set_default_extension).

on_menu_command (menu_id: INTEGER) is
-- menu_id has been selected.

do
inspect

menu_id
...

when Cmd_open then
if open_dialog = void then

!! open_dialog.make;
open_dialog.set_filter (<<"Draw file">>, <<"*.drw">>);
open_dialog.set_default_extension ("drw")

end ;
open_dialog.activate (Current);
if open_dialog.selected then

lines ?= lines.retrieve_by_name (open_dialog.file_name);
invalidate

end
when Cmd_save then

if save_dialog = void then
!! save_dialog.make;
save_dialog.set_filter (<<"Draw file">>, <<"*.drw">>);
save_dialog.set_default_extension ("drw")

end ;
save_dialog.activate (Current);
if save_dialog.selected then

lines.store_by_name (save_dialog.file_name)
end

end

...

end ;

Figure 15 shows the standard open dialog box as it appears when the user chooses the Open option.

47

Figure 15

Here is the end of the tutorial, we hope that you have plenty of ideas to improve your application!

