Windows Eiffel Library Tutorial

Interactive Software Engineering, Inc.

The Windows Eiffel Library (WEL) has been designed to make Windows programming easier, more reliable, more
convenient, and more powerful by using Eiffel principles. The most obvious definition of WEL is that it is an
encapsulation of Windows primitives, making it possible for users of ISE’s Graphical Eiffel for Windows to have
direct access to the Windows graphical API.

This tutorial requires some knowledge of Eiffel 3 (the language), EiffelBase (ISE's basic libraries) and EiffelBench
(ISE's Programming Environment). Your knowledge of Windows Software Developers Kit will be helpful but not
necessary.

In the upcoming chapters, you will build a graphical, interactive Windows program, complete with menus, file
saving and loading, graphic and text drawing. On the way, you will be introduced to the major principles of
Windows application design, such as message processing, managing a device context, using dialog boxes, and
automatic graphics redrawing.

This walk-through consists of eight steps:

» Step 1: Creating an application

» Step 2: Defining a main window class
» Step 3: Drawing text in a window

» Step 4: Drawing lines in a window

* Step 5: Changing line thickness

» Step 6: Repainting a window

e Step 7: Adding a menu

e Step 8: Storing the drawing in a file

Figure 1 shows the application you will have created at the end of this manual.

Figure 1
i My application
File Line
Line thickness

wWidth ok, I
H Cancel |

The source code for the application is provided at various stages on the distribution disk. The directories in
$SEIFFEL3\EXAMPLES\WEL\TUTORIAL are named STEP1, STEP2 and so on, corresponding to the steps in the
tutorial.

' This tutorial is also available on our WEB site at
http://www.eiffel.com/doc/manuals/technology/wel/tutorial/index.html.

Step 1: Creating an application

All Windows programs have a window called main window that appears when the user starts the program. In
WEL, this window is owned by the application which is responsible for creating and displaying the main window,
processing Windows messages and terminating the application.

Every WEL application must define its own descendainVBf._ APPLICATIONN order to define the deferred
functionmain_windowas follows:

class
APPLICATION

inherit
WEL_APPLICATION

creation
make

feature

main_window WEL_FRAME_WINDOWs
-- Create the application's main window.
once
Il Resultmake_top'(My application)
end;

end -- classAPPLICATION

This class is the minimal WEL application, if you run it you will get an empty frame window that can be moved,
resized, maximized, minimized and closEijure 2 shows the appearance of the application.

Figure 2
i My application O]

Step 2: Defining a main window class

In this step, you will learn how to define your window type for the main window, including application-specific
behavior and appearance. You will create a more specialized main window class which is descending from
WEL_FRAME_WINDOW

The quickest way to make a window useful is to explain it how to respond to Windows messages. For example,
when the user clicks the left mouse button in the main winddyddipplication the corresponding window object
receives &Vm_Ibuttondowmessage from Windows. This tells the window object that the user clicked the mouse in
it. It also passes the coordinates of the point where the user clicked. To intercept and respond to Windows
messages, WEL defines several procedures corresponding to the most common Windows messages. For instance,
WEL_WINDOWhas a procedure named_left_button_downorresponding to th&/m_lbuttondowmessage. To

respond to the message, you just need to redefine this procedure as follows:

on_left_button_dow(keys x_posy_pos INTEGER is
-- Display a message box when the user presses the
-- the left mouse button.
do
information_message_b@X¥ou have pressed the left mouse butfon.
"Message receivéj
end;

Since you have defined a customized main window class, you have to chamgéntheindowfunction in
APPLICATIONIn order to return an instance dAIN_WINDOW ClassAPPLICATIONmust be defined as
follows:

class
APPLICATION

inherit
WEL_APPLICATION

creation
make

feature

main_window MAIN_WINDOWs
-- Create the application's main window.
once
Il Resulmake
end;

end -- classAPPLICATION

Figure 3 shows the message box displayed when the user clicks in the main window.

Figure 3

My application

Mezzage received

A

=

The program created here closes when the user clicks on the system close box. But in serious applications, you may
want to change this default behavior, for instance, to ask the user if he wants to save his work. WEL provides an
easy way to do that, you just need to redefine the boolean fuctdssableto perform tests and actions needed. If

you return True (which is the default value) the user will be able to close the window, otherwise the user will be
unable to close it. A possible implementation could be the following:

closeable BOOLEANIs
-- Does the user want to quit?
do
Result= question_message_bE¥o you want to quit? "Quit")
end;

Here is the full source code BIAIN_WINDOW

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW
redefine
on_left_button_dowrcloseable
end

creation
make

feature {NONE -- Initialization

makeis
-- Make the main window.
do
make_to("My applicatiory)
end;

feature {NONE -- Implementation
on_left_button_dow(keys x_posy_pos INTEGER is

-- Display a message box when the user presses the
-- the left mouse button.

do
information_message_b@X¥ou have pressed the left mouse butfon.
"Message receivéj
end;
closeable BOOLEANIs
-- Does the user want to quit?
do
Result.= question_message_ b@¥o you want to quit? "Quit")
end;

end -- classMAIN_WINDOW

Step 3: Drawing text in a window

In the next sections, you will learn how to draw lines in the window, change the thickness of the lines, and finally
save the contents of the window into a file for reloading later on. But first and to make things simple, you will learn
to draw text in a window.

To provide applications with graphic functionality, Windows has a set of functions called the Graphic Device
Interface, or GDI. The GDI is the graphic engine that Windows applications use to display and manipulate

graphics. To draw text, lines, or figures in a window, you need to use a device context given by the GDI. A device
context is a virtual surface with associated attributes, such as a pen, brush, font, background color, text color and
current position. When you call GDI functions to draw on a device context, the device driver associated with that
device context translates that drawing action into appropriate commands. These commands reproduce the drawing
action as accurately as possible on the device context, regardless of the display's capabilities. The display might be a
low-resolution monochrome screen, a two-million color screen or a printer. In other words, all devices supported by
Windows.

To make things more interesting in your program, instead of bringing up a message box, you will respond by
drawing text that shows the coordinates of the point where you clicked on the window. The new version of
on_left_button_dowwill be defined as follows:

on_left_button_dow(keys x_posy_pos INTEGER is

-- Write x_posandy_poswhen the user presses
-- the left mouse button.

local
positiont STRING

do
position:="(";
positionappend_intege(x_pos;
positionappend(”, ");
positionappend_integety_pos;
positionextend(")");
dc.get
dc.text_out(x_posy_pos position;
dcrelease

end;

You also need to add a new attribute in c8dN_WINDOWwhich is:
dc. WEL_CLIENT_DG
-- Device context associated to the current

-- client window

Themakeroutine needs to be modified in order to crektas follows:

makeis
-- Make the main window.
do
make_to("My applicatior);
Il dcmake(Currenf)
end;

Figure 4 shows the result after several clicks.

Figure 4
My application =] E3

18, 23 (227, 37)

209, 168

315, 198

One more function you can add to the application is clearing the window. The window will be cleared when a right
mouse button is clicked. To implement this, redeineright_buttorto callinvalidatewhich causes the whole
window to be repainted. Since your window does not yet know how to repaint itself, it just clears its client area.

on_right_button_dowikeys x_posy_pos INTEGER is
-- Invalidate window.
do
invalidate
end;

The full code oMAIN_WINDOWs:

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW
redefine
on_left_button_dowron_right_button_dowrcloseable
end

creation
make

feature {NONE -- Initialization

makeis
-- Make the main window.
do
make_to("My applicatior);
Il dc.make(Curreni
end;

feature -- Access

dc. WEL_CLIENT_DG
-- Device context associated to the current
-- client window

feature {NONE -- Implementation

on_left_button_dow(keys x_posy_pos INTEGER is

-- Write x_posandy_poswhen the user presses
-- the left mouse button.

local
positionn STRING

do
position:="(";
positionappend_intege¢x_pos;
positionappend(”, ");
positionappend_integety_pos;
positionextend(")");
dc.get
dc.text_out(x_posy_pos position;
dcrelease

end;

on_right_button_dowikeys x_posy_pos INTEGER is
-- Invalidate window.
do
invalidate
end;

closeable BOOLEANis

-- Does the user want to quit?
do

Result.= question_message_ b@¥o you want to quit? "Quit")
end;

end -- classMAIN_WINDOW

Step 4: Drawing lines in a window

In the next few steps, you will build a simple painting program that lets the user draw on the main window. You

will do the following steps:

1.
2.
3.

Typically, a window will receive one left button down message, followed by a series of mouse move messages (one

Respond to left button clicks and drag by connecting the dots, resulting drawn lines.

Respond to the right click by bringing up an input dialog, allowing the user to change the thickness of the line.
Automatically redraw the window's contents by storing the points and redrawing them in response to a paint
message.

for each point dragged over), then followed by a single left button up message. The drawing model will be
implemented as follows:

Attribute button_dowrhas been introduced to draw the lines only when the user moves the mouse while the button

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.

do
if not button_dowrnhen
button_down= true ;
dc.get
dc.move_tax_posy_po3
end
end;

on_mouse_mov&eys x_posy_pos INTEGER is

-- Connect the points to make lines.

do
if button_downhen
dcline_to(x_posy_po3
end
end;

on_left_button_ugkeys x_posy_pos INTEGER is
-- Terminate the drawing process.

do
if button_downhen
button_down= false;
dc.release
end
end;

is down.

button_downBOOLEAN
-- Is the left mouse button down?

10

Figure 5 shows what the application can do.

Figure 5

My application

11

Here is the full text oMAIN_WINDOW

class
MAIN_WINDOW
inherit
WEL_FRAME_WINDOW
redefine
on_left_button_dowron_left_button_up
on_right_button_dowron_mouse_moye
closeable
end
creation

make

feature {NONE -- Initialization

makeis
-- Make the main window.
do
make_to("My applicatior);
II'dc.make(Curreni
end;

feature -- Access

dc: WEL_CLIENT_DC

-- Device context associated to the current

-- client window

button_downBOOLEAN
-- Is the left mouse button down?

feature {NONE -- Implementation

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.

do
if not button_dowrnhen
button_down= true ;
dc.get
dc.move_tax_posy_po3
end
end;

on_mouse_mov&eys x_posy_pos INTEGER is
-- Connect the points to make lines.
do
if button_downhen
dcline_to(x_posy _po$
end
end;

12

on_left_button_ugkeys x_posy_pos INTEGER is
-- Terminate the drawing process.

do
if button_downhen
button_down= false;
dc.release
end
end;

on_right_button_dowikeys x_posy_pos INTEGER is
-- Invalidate window.

do
invalidate
end;
closeable BOOLEANIs
-- Does the user want to quit?
do
Result.= question_message_ b@¥o you want to quit? "Quit")
end;

end -- classMAIN_WINDOW

13

Step 5: Changing line thickness

At this point, you can draw only thin lines. In order to change line thickness, you have to change the thickness of
the pen the application use to draw lines. In this step, you will learn how to set new tools in a display context and
how to create a dialog box.

You will use a dialog box to provide a mechanism for the user to change the line thi€kma®s6 shows the
dialog box.

Figure 6

Line thickneszs Ed

i

There are 2 methods to include a dialog box in your application:

» Using resources
* Writing Eiffel code

The first method consists of using Windows resources capabilities works only with the Professional version of ISE
Eiffel since resources are linked to the program's executable file. This solution needs a linker, a resource compiler
and a resource editor which are shipped with your C-compiler. Resources compilation process is completely
integrated to Professional ISE Eiffel 3 for Windows and fully transparent for the user. You just need to put a
resource file in the project directory, start a Freeze (or Finalize) operation, and EiffelBench does the rest. In a
nutshell, the freeze or finalization process will automatically copy the resource file from the project directory into
the \EIFGEN\[W|F]_CODE directory and will link it to the executable file. Once the resource file is linked to your
executable you can just Melt your project. You will need to Freeze again if you change or add any resources. This
method is much easier and quicker than the second because it is usually easier to use a visual tool to design a dialog
box or a menu instead of writing Eiffel code. One of the most important advantages of resources is that you can
change them without touching Eiffel code. It is clear that this is the preferred method if you are a Professional ISE
Eiffel 3 for Windows user. You will see later in details how to create and use a resource file in WEL.

The second method consists of writing an Eiffel class which creates each visual component of the dialog box with
the right positions and dimensions. Typically, if you use Personal ISE Eiffel 3 for Windows you will choose this
method since the Personal version does not allow to produce a stand-alone executable file.

Both methods will be explain in details in the following sections.

Method 1: Using resources

Resources are data stored in a program's executable file, but stored separately from the program's normal data
segment. Typically, Windows leaves resources on disk when it loads an application into memory, and loads
individual resources as it needs them during execution. You've probably noticed dynamic loading of resources when
working with Windows programs. When you invoke a program's dialog box for the first time, Windows usually
accesses the disk to copy the dialog box resource from the program's .EXE file into memory. Of course, if you want
the resource to be loaded when the program is loaded, or if you don't want Windows to be able to discard the
resource from memory, you can change its attributes (for more details, see your resource editor manual). These are
the resources you will create and use most often:

14

* Menus
» Dialog boxes

* lcons

» Cursors

» Keyboard accelerators
e Bitmaps

e Character strings

You can create resources visually using a resource editor as Borland Resource Workshop, Microsoft Developer
Studio, or Watcom resource editor. See your resource editor manual to learn how to create a resource file.

For instancefigure 7 shows Borland Resource Workshop after the dialog box thickness has been created and
Figure 8 shows the same with Microsoft Developer Studio.

Figure 7

™ Reszource Workshop - app.rc

++ DIALOG : DLG_LINE_THICKMESS O] =]
+ Alignm... s Tools B3 2| | DiaLoG

~FFFL»E

Line thickneszs

15

Figure 8

"sj Microzoft Developer Studio =] k3

File Edit “iew Inzert Build Toolz Lavout ‘wWindow Help

=]] e a1

Z C:\...\wel\Step\App.ic = =10 x|
E}E App.rc IT ah|
E}a Dialog x|@®
| DLE_LIME_THICKMESS|

H |3
m| s

fa# App.rc - DLG_LINE_THICKNESS (Dialog) [M[=] B3

B EEEE EE FE EEE]

Ready [1: 98,38 |[f} 124x43 [READ 4

No matter what resource editor tool you want to use to design the line thickness dialog box, you should obtain a
resource file like the following (app.rc).

#include <windows.h>

#define DLG_LINE_THICKNESS 1
#define IDC_EDIT_WIDTH 101

DLG_LINE_THICKNESS DIALOG 98, 38, 124, 49

STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION "Line thickness"

FONT 8, "MS Sans Serif"

{
LTEXT "&Width", -1, 9, 12, 22, 8
EDITTEXT IDC_EDIT_WIDTH, 9, 22, 30, 12, WS_BORDER | WS_GROUP | WS_TABSTOP
DEFPUSHBUTTON "OK", IDOK, 65, 8, 50, 14, BS_DEFPUSHBUTTON | WS_GROUP | WS_TABSTOP
PUSHBUTTON "Cancel", IDCANCEL, 65, 26, 50, 14, WS_GROUP | WS_TABSTOP

}

TheDIALOG statement defines a window that an application can use to create dialog boxes. The statement defines

the position and dimensions of the dialog box on the screen as well as the dialog borrstylestatement
defines the controls of the dialog box.

16

namelDDIALOG [load-mem] X, y, width, height
[optional-statements]
BEGIN

control-statement

END

Important note: The resource file needs to be present in the project directory and its name must be the same as the
system name specified in the Ace file with the .RC extension.

As you see at the beginning of the resource file, two identifiers (DLG_LINE_THICKNESS and

IDC_EDIT_WIDTH) are declared. You will use them to identify the dialog box and the edit control since a

resource file may contain several dialog boxes and one dialog box may contains several controls. WEL provides a
simple tool to extract identifiers from a resource file (.RC) or a header file (.H) to make an Eiffel class which
contains a set of constants. If you change or add any identifiers in the resource file, make sure to update your Eiffel
class as well. After running this tool named H2E (available in $EIFFEL3\UTIL) with your resource file, you will
obtain the following class:

indexing
description "Generated by h2e from the file C:\Eiffel3\examples\wel\tutorial\step5\app.rc.

class
APPLICATION_IDS

feature -- Access
Dlg_line_thicknessINTEGERis 1,
Idc_edit_width INTEGERis 101,

end -- classAPPLICATION_IDS

Figure 9 shows the values entered in H2E in order to obtain the above file.

Figure 9

h2e P [3|
Eile Help

Header/Resource file

IE:'\EiffeIE"-.e:-:amples'xwel"-.tutu:urial'\stepﬁhapp.ru: Browsze... |
Eiffel file

I-I::"-.EiffeIE'xe:-cam|:|Ies"uwel'xtuturial"-.stepE"uapp_ids.e Browse... |
Clazz name

I.&F‘F‘LIE.-'—‘-.TIEIN_IDS
H

Cloze | %E

Note: If you use Microsoft Developer Studio, identifiers are saved in file “resource.h'. In this case, specify this file
and not the resource file.

17

Now, you will learn how to make the connection between this dialog box specified in the resource file and your
application. You will create a new class inherited from the &8k MODAL_DIALOGo load and use the line
thickness dialog box. This class will do the following tasks:

» Load the dialog box from the resource and create an edit contragh&eoutine.

» Set the single line edit control Width with the value previously entered by the user (The first time, this value
will be equal to 1). Segetup_dialogoutine.

» If the new width entered by the user is a valid integer, save the valee iwidthand terminate the dialog

box. Seen_okroutine.

18

The full text of this class is: (Note that the clas3PLICATION_IDSyenerated by H2E is added in the inheritance
clause.)

class
LINE_THICKNESS_DIALOG

inherit
WEL_MODAL_DIALOG
redefine
on_ok setup_dialog
end;
APPLICATION_IDS
export
{NONE all
end

creation
make

feature {NONE -- Initialization

make(a_parent WEL_COMPOSITE_WINDOM&
-- Make the dialog box and creatdit

do
make_by_ida_paren Dlg_line_thickness
Il editmake_by_idCurrent, idc_edit_widthy;
pen_width=1

end;

feature-- Access

edit WEL_SINGLE_LINE_EDIT
-- Edit control to enter pen width

pen_width INTEGER
-- Pen width entered

feature {NONE -- Implementation

setup_dialogs
-- Set the width previously entered.

local
s: STRING

do
II' smake(0);
s.append_integefpen_width;
editset_tex{s)

end;

on_okis

-- Ensureeditvalue is an integer, save it in
-- pen_widthand close the dialog box.

do

if edittextis_integerthen

19

pen_width= edittextto_integer
terminate(idok)
end
end;

end -- classLINE_THICKNESS_DIALOG

20

Method 2: Writing Eiffel code

If you use Personal ISE Eiffel, you need to create the following class:

class
LINE_THICKNESS_WINDOW

inherit
WEL_FRAME_WINDOW
redefine
on_control_command
end

creation
make

feature {NONE -- Initialization

make(a_parent WEL_COMPOSITE_WINDOM&
-- Make the line thickness window.

do
make_childa_parent "Line thicknesy;
move_and_resizR0, 20, 210 104 true);
Il staticmake(Current, "Width', 14, 18, 38 13, - 1);
Il editmake(Current ", 14, 33, 52, 19, - 1);
Il ok_buttormake(Current, "OK", 98, 12, 87, 23, - 1);
Il cancel_buttommake(Current "Cancel, 98, 45, 87, 23, - 1);
pen_width=1
end;

feature -- Access

edit WEL_SINGLE_LINE_EDIT
-- Edit control to enter pen width

ok_button WEL_PUSH_BUTTON
-- Button to validate the value

cancel_buttonWEL_PUSH_BUTTON
-- Button to cancel the value

static WEL_STATIC
-- "Width" static text

pen_width INTEGER
-- Pen width entered

feature -- Basic operations

activateis
-- Activate the window
local
s. STRING

21

do
II' smake(0);
s.append_integefpen_width;
editset_tex(s);
show

end;

feature {NONE -- Implementation

on_control_comman(tontrol. WEL_CONTROLis
-- Proces®k_buttonandcancel_buttorselection.

local
p: MAIN_WINDOW
do
if control= ok_buttorthen
if edittextis_integerthen
pen_width= edittextto_integer
p ?=parent
if p/=voidthen
p.set_pen_widtijpen_width
end;
hide
end
elseif control= cancel_buttorthen
hide
end
end;

end -- classLINE_THICKNESS WINDOW
In order to be able to change line thickness in the device context, you need to add the following attribute:

pen WEL_PEN
-- Pen currently selected dt

You also have to set the default pen width inrttekeroutine:

makeis
-- Make the main window.
do
make_to("My applicatior);
Il dcmake(Currend;
set_pen_widtli1)
end;

The implementation afet_pen_widtls defined as follows:

set_pen_widtinew_width INTEGER is
-- Set pen width witmew_width
do
Il penmake_solidnew_width black
end;

22

Theblackcolor can be retrieved from the clA8&L_ STANDARD_COLOR#hich must be added in the
inheritance clause.

You have to insert a call gelect_penin the routineon_left_button_dowas follows. Selecting a pen for a device
context will allow you to use a different pen than the default one.

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.

do
if not button_dowrnhen
button_down= true ;
dc.get
dc.move_tax_posy_pos;
dc.select_perfpen
end
end;

The new version adn_right_buttorwill now bring up the dialog box:

According the version you use, you need to updat&tihN_WINDOWclass in order to bring up the line thickness
dialog box or window when the user pushes on the right button. If you use Professional ISE Eiffel 3 for Windows,
you need to add a new attriblitge_thickness_dialognd change the body of_right_button_dowias follows:

line_thickness_dialad-INE_THICKNESS_DIALOG
-- Dialog box to change line thickness

on_right_button_dowikeys x_posy_pos INTEGER is
-- Bring upline_thickness_dialognd set the
-- new pen width.

do
if line_thickness_dialog voidthen
Il line_thickness_dialagake(Currenf
end;
line_thickness_dialagctivate
if line_thickness_dialogk pushedhen
set_pen_widtliline_thickness_dialagen_width
end
end;

On the other hand, if you use Personal ISE Eiffel for Windows, you need to add a new attribute
line_thickness_dialognd change the body of_right_button_dowias follows:

line_thickness_window.INE_THICKNESS_WINDOW
-- Window to change line thickness

on_right_button_dowikeys x_posy_pos INTEGER is
-- Bring upline_thickness_windoand set the
-- new pen width.

do
if line_thickness_window voidthen
II' line_thickness_windawake(Curreni
end;
line_thickness_windowactivate
end;

23

Figure 10 shows the new capabilities of your application:

Figure 10

My application

Line thickness

24

This is the full text oMAIN_WINDOW(Professional version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW
redefine
on_left_button_dowron_left_button_up
on_right_button_dowron_mouse_moye
closeable
end;
WEL_STANDARD_COLORS
export
{NONE all
end

creation
make

feature {NONE -- Initialization

makeis
-- Make the main window.
do
make_to("My applicatior);
Il dc.make(Currend;
set_pen_widtli1)
end;

feature -- Access

dc: WEL_CLIENT_DC

-- Device context associated to the current

-- client window

button_downBOOLEAN
-- Is the left mouse button down?

pen WEL_PEN
-- Pen currently selected dt

line_thickness_dialad-INE_THICKNESS_DIALOG
-- Dialog box to change line thickness

feature -- Element change

set_pen_widtinew_width INTEGER is
-- Set pen width witmew_width
do
Il penmake_solidnew_width black
end;

feature {NONE -- Implementation

25

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.

do
if not button_downhen
button_down= true ;
dc.get
dc.move_tax_posy_pos;
dc.select_perfpen
end
end;

on_mouse_mov&eys x_posy_pos INTEGER is
-- Connect the points to make lines.
do
if button_downhen
dcline_to(x_posy_po$
end
end;

on_left_button_ugkeys x_posy_pos INTEGER is
-- Terminate the drawing process.

do
if button_downhen
button_down= false;
dc.release
end
end;

on_right_button_dowikeys x_posy_pos INTEGER is
-- Bring upline_thickness_dialognd set the
-- new pen width.

do
if line_thickness_dialog voidthen
Il line_thickness_dialagake(Currenf)
end;
line_thickness_dialagctivate
if line_thickness_dialogk pushedhen
set_pen_widtliline_thickness_dialagen_width
end
end;
closeable BOOLEANIs
-- Does the user want to quit?
do
Result.= question_message b@¥o you want to quit? "Quit")
end;

end -- classMAIN_WINDOW

26

This is the full text oMAIN_WINDOW/(Personal version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW
redefine
on_left_button_dowron_left_button_up
on_right_button_dowron_mouse_moye
closeable
end;
WEL_STANDARD_COLORS
export
{NONE all
end

creation
make

feature {NONE -- Initialization

makeis
-- Make the main window.
do
make_to("My applicatior);
Il dc.make(Currend;
set_pen_widtli1)
end;

feature -- Access

dc. WEL_CLIENT_DG
-- Device context associated to the current
-- client window.

button_downBOOLEAN
-- Is the left mouse button down?

pen WEL_PEN
-- Pen currently selected dt.

line_thickness_window.INE_THICKNESS_WINDOW
-- Window to change line thickness.

feature -- Element change

set_pen_widtinew_width INTEGER is
-- Set pen width witmew_width
do
Il penmake_solidnew_width black
end;

feature {NONE -- Implementation

27

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.

do
if not button_downhen
button_down= true ;
dc.get
dc.move_tax_posy_pos;
dc.select_perfpen
end
end;

on_mouse_mov&eys x_posy_pos INTEGER is
-- Connect the points to make lines.
do
if button_downhen
dcline_to(x_posy_po$
end
end;

on_left_button_ugkeys x_posy_pos INTEGER is
-- Terminate the drawing process.

do
if button_downhen
button_down= false;
dc.release
end
end;

on_right_button_dowikeys x_posy_pos INTEGER is
-- Bring upline_thickness_windoand set the
-- new pen width.

do
if line_thickness_window voidthen
II' line_thickness_windawake(Curreni
end;
line_thickness_windowactivate
end;
closeable BOOLEANIs
-- Does the user want to quit?
do
Result= question_message b@®o you want to quit? "Quit")
end;

end -- classMAIN_WINDOW

28

Step 6: Repainting a window

As you have probably noticed, the graphics and text you draw in a window using device context functions (like
line_toor text_ouj disappear when you resize or uncover the window. Windows does not save the graphics that you
draw in the device context, the application is in charge to refresh the window when it is necessary. In this step you
will learn how to do that.

When the user of your application resizes or uncovers a window, it requires updating, or painting. WEL
automatically calls then_paintprocedure (frortWEL_COMPOSITE_WINDOWWhen the window needs to be
painted. Proceduren_paintis where you write the code to paint the contents of the window. There is one major
difference between drawing graphics in ¢ime paintprocedure and at other times, such as in response to mouse
actions. The device context to be used for painting is passedpaititedcparameter, so your program does not
need to get and release it. You will, however, need to select your drawing tools jpainthelc

To paint a window's contents, you are going to replay the actions that led to the original dragdnigubruse
paint_dcinstead. But first, you need to store the graphic as objects, so you can paint theom impairet
procedure.

Let's say that the window's contents is a set of lines, and each line is a set of points with a width. Then, you can
simply define a line as follows:

29

class
LINE

inherit
LINKED_LIST[POINT]

creation
make

feature -- Access

width; INTEGER
-- Width of the line

feature -- Element change

set_width(a_width INTEGER is

-- Setwidth with a_width
require

positive_widtha_width>=0
do

width:= a_width
ensure

width_setwidth= a_width
end;

add(x, y: INTEGER is

-- Add a point specified by andy.

local
p: POINT

do
I p.make(x, y);
extend(p)

end;

invariant
positive_width width>= 0;

end -- classLINE

30

ClassPOINT s simply defined as follows:

class
POINT

creation
make

feature -- Initialization

make(a_x a_y. INTEGER is
-- Make a point witta_xanda_y.

do
X:=a x
y=ay
ensure
X_setx=a X
y sety=ay
end;
feature -- Access
x: INTEGER
-- X position
y: INTEGER
-- y position

end -- classPOINT

Using clas4.INE, the basic idea consists of saving mouse movements while the user draws. Then, you will use
these data in then_paintprocedure to redraw window's contents. First, you need to add the following attributes in
classMAIN_WINDOW

lines LINKED_LIST[LINE];
-- All lines drawn by the user

current_line LINE;
-- Line currently drawn by the user

Attribute lines needs to be created in tmeakeroutine as follows:

makeis

-- Make the main window.

do
make_to("My applicatior);
II' dc.make(Currend;
set_pen_widtll);
II' linesmake

end;

And finally, you have to changm_left _button_dowandon_mouse_mowe store the points ilines

31

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.
do
if not button_downhen
button_down= true ;
dc.get
dc.move_tax_posy_pos;
dc.select_perfpen);
Il current_linemake
current_lineset_width(penwidth);
linesextend(current_ling;
current_lineadd (x_posy_po$
end
end;

on_mouse_mov&eys x_posy_pos INTEGER is
-- Connect the points to make lines.

do
if button_downhen
dcline_to(x_posy pos;
current_lineadd(x_posy_po$
end
end;

32

At this point,lineshas all the information needed to redraw the window's contents. Basically, you just need to
redefineon_paintand iterate over the list to draw the lines as follows:

on_paint(paint_dc WEL_PAINT_DCinvalid_rect WEL_RECTis
-- Paint the lines.

local
a_line LINE;
a_pen WEL_PEN
first_point BOOLEAN
do
from
linesstart
until
linesoff
loop
from
first_point:=true;
a_line:=linesitem
a_linestart,
Il'a_penmake_solida_linewidth, black);
paint_dcselect_perfa_pen
until
a_lineoff
loop
if first_pointthen
first_point:= false;
paint_dcmove_tga_lineitemx, a_lineitemy)
else
paint_dcline_to(a_lineitemx, a_lineitemy)
end;
a_lineforth
end;
linesforth
end
end;

Now, if you minimize and restore the window, you will see that window's contents is restored.

33

Here is the full text oMAIN_WINDOW/(Professional version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW
redefine
on_left_button_dowron_left_button_up
on_right_button_dowron_mouse_moye
on_paint closeable
end;
WEL_STANDARD_COLORS
export
{NONE all
end

creation
make

feature {NONE -- Initialization

makeis

-- Make the main window.

do
make_to("My applicatior);
Il dc.make(Currend;
set_pen_widtll);
II' linesmake

end;

feature -- Access

dc: WEL_CLIENT_DC

-- Device context associated to the current

-- client window

button_downBOOLEAN
-- Is the left mouse button down?

pen WEL_PEN
-- Pen currently selected dt

line_thickness_dialad-INE_THICKNESS_DIALOG
-- Dialog box to change line thickness

lines LINKED_LIST[LINE];
-- All lines drawn by the user

current_line LINE;
-- Line currently drawn by the user

feature -- Element change

34

set_pen_widtinew_width INTEGER is
-- Set pen width witmew_width
do
Il penmake_solidnew_width black
end;

feature {NONE -- Implementation

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.
do
if not button_dowrnhen
button_down= true ;
dc.get
dc.move_tax_posy_pos;
dc.select_perfpen);
Il current_linemake
current_lineset_width(penwidth);
linesextend(current_ling;
current_lineadd (x_posy_po$
end
end;

on_mouse_mov&eys x_posy_pos INTEGER is
-- Connect the points to make lines.

do
if button_downhen
dcline_to(x_posy_pos;
current_lineadd(x_posy_po$
end
end;

on_left_button_ugkeys x_posy_pos INTEGER is
-- Terminate the drawing process.

do
if button_downhen
button_down= false;
dc.release
end
end;

on_right_button_dowikeys x_posy_pos INTEGER is
-- Bring upline_thickness_dialognd set the
-- new pen width.

do
if line_thickness_dialog voidthen
II' line_thickness_dialagake(Currenf)
end;
line_thickness_dialagctivate
if line_thickness_dialogk pushedhen
set_pen_widtliline_thickness_dialagen_width
end
end;

35

on_paint(paint_dc WEL_PAINT_DCinvalid_rect WEL_RECT s
-- Paint the lines.

local
a_line LINE;
a_pen WEL_PEN
first_point BOOLEAN
do
from
linesstart
until
linesoff
loop
from
first_point:=true;
a_line:=linesitem
a_linestart,
Il'a_penmake_solida_linewidth, black);
paint_dcselect_perfa_pen
until
a_lineoff
loop
if first_pointthen
first_point:= false;
paint_dcmove_tga_lineitemx, a_lineitemy)
else
paint_dcline_to(a_lineitemx, a_lineitemy)
end;
a_lineforth
end;
linesforth
end
end;
closeable BOOLEANIs
-- Does the user want to quit?
do
Result.= question_message b@¥®o you want to quit? "Quit")
end;

end -- classMAIN_WINDOW

36

Here is the full text oMAIN_WINDOW/(Personal version):

class
MAIN_WINDOW

inherit
WEL_FRAME_WINDOW
redefine
on_left_button_dowron_left_button_up
on_right_button_dowron_mouse_moye
on_paint closeable
end;
WEL_STANDARD_COLORS
export
{NONE all
end

creation
make

feature {NONE -- Initialization

makeis

-- Make the main window.

do
make_to("My applicatior);
Il dc.make(Currend;
set_pen_widtll);
II' linesmake

end;

feature -- Access

dc. WEL_CLIENT_DG
-- Device context associated to the current
-- client window

button_downBOOLEAN
-- Is the left mouse button down?

pen WEL_PEN
-- Pen currently selected dt

line_thickness_window.INE_THICKNESS_WINDOW
-- Window to change line thickness

lines LINKED_LIST[LINE];
-- All lines drawn by the user

current_line LINE;
-- Line currently drawn by the user

feature -- Element change

37

set_pen_widtinew_width INTEGER is
-- Set pen width witmew_width
do
Il penmake_solidnew_width black
end;

feature {NONE -- Implementation

on_left_button_dow(keys x_posy_pos INTEGER is
-- Initiate the drawing process.
do
if not button_dowrnhen
button_down= true ;
dc.get
dc.move_tax_posy_pos;
dc.select_perfpen);
Il current_linemake
current_lineset_width(penwidth);
linesextend(current_ling;
current_lineadd (x_posy_po$
end
end;

on_mouse_mov&eys x_posy_pos INTEGER is
-- Connect the points to make lines.

do
if button_downhen
dcline_to(x_posy_pos;
current_lineadd(x_posy_po$
end
end;

on_left_button_ugkeys x_posy_pos INTEGER is
-- Terminate the drawing process.

do
if button_downhen
button_down= false;
dc.release
end
end;

on_right_button_dowikeys x_posy_pos INTEGER is
-- Bring upline_thickness_windoand set the
-- new pen width.

do
if line_thickness_window voidthen
II' line_thickness_windawake(Curreni
end;
line_thickness_windowactivate
end;

on_paint(paint_dc WEL_PAINT_DCinvalid_rect WEL_RECT s
-- Paint the lines.
local

a_line LINE;
a_pen WEL_PEN
first_point BOOLEAN

do
from
linesstart
until
linesoff
loop
from
first_point:=true;
a_line:=linesitem
a_linestart,
Il'a_penmake_solida_linewidth, black);
paint_dcselect_perfa_pen
until
a_lineoff
loop
if first_pointthen
first_point:= false;
paint_dcmove_tga_lineitemx, a_lineitemy)
else
paint_dcline_to(a_lineitemx, a_lineitemy)
end;
a_lineforth
end;
linesforth
end
end;
closeable BOOLEANIs
-- Does the user want to quit?
do
Result= question_message_ b@¥o you want to quit? "Quit")
end;

end -- classMAIN_WINDOW

39

Step 7: Adding a menu

Most Windows applications have a menu on their main window to provide a variety of selections for the user. In
this section, you will add a menu to the progr&igure 11 shows the menus that you will add.

Figure 11

Like dialog boxes, you have two ways to add a menu: using resources or writing Eiffel code. Once again, both
solutions will be presented for the Professional and Personal users.

Method 1: Using resources

Resource editors provide a very easy way to design menus visually. For inBtgame 12 shows Borland
Resource Workshop's menu module.

Figure 12

L! MENU : MAIN_MEMNU_ID _ O] =]
« TEST MENU: MAIN_MENU_ID [E2

40

After adding the menus in app.rc, the following text will be added to the file.

#define MAIN_MENU_ID 1
#define CMD_NEW 101
#define CMD_OPEN 102
#define CMD_SAVE 103
#define CMD_EXIT 104

#define CMD_LINE_THICKNESS 105
MAIN_MENU_ID MENU

POPUP "&File"

{
MENUITEM "&New", CMD_NEW
MENUITEM "&Open...", CMD_OPEN
MENUITEM "&Save...", CMD_SAVE
MENUITEM SEPARATOR
MENUITEM "E&xit", CMD_EXIT

}
POPUP "&Line"
{

}

MENUITEM "Line &thickness...", CMD_LINE_THICKNESS
}
The value of MAIN_MENU_ID, which identifies the menu, will be used in Eiffel to load the menu. Menu item

identifiers (as CMD_NEW, CMD_OPEN) will be used to identify options selected by the user. Don't forget to
update clas&PPLICATION_IDSusing H2E since new identifiers have been added in the resource file.

Now, you need to add the following once function to load the menu:
main_menuWEL_MENUis
-- Window's menu
once
Il Resultmake by idMain_menu_ijl
end;

ClassAPPLICATION_IDSheeds to be added in the inheritance clau$¢N_ WINDOWo useMain_menu_id

41

Method 2: Writing Eiffel code
If you can't use a resource editor, you have to create the menu using WEL_MENU's procedures as follows:

main_menuWEL_MENUis
-- Window's menu

local
file, line: WEL_MENU

once
Il file.make
file.append_strind"&New', Cmd_new,
file.append_strind"&Open..!', Cmd_opef
file.append_strind"&Save..", Cmd_savg
file.append_separator
file.append_strind"E&xit", Cmd_exi};
Il line.make
line.append_strind"Line &thickness.", Cmd_line_thickne3s
Il Resulmake
Resultappend_popuffile, "&File");
Resultappend_popufline, "&Line")

end;

Cmd_newINTEGERIs 101
Cmd_openINTEGERis 102
Cmd_saveINTEGERis 103
Cmd_exit INTEGERis 104
Cmd_line_thicknessNTEGERis 105

Basically, the function creates two popup menus (File and Line) and add them to the main menu. Procedure
append_stringexpects two arguments which are an item na®T&R(NG and an unique identifieiNTEGER.
Optional character "&" identifies the hot key of the option.

No matter which method you use, now you need to set the menu for the window/iAlteWINDOWs make
routine as follows:

set_meny@main_meny

Figure 13 shows the menu how it appears in the menu window.

42

Figure 13
i My application O]

|7[=8 Line
Hew
Open...
Save...

E mit

At this point, choosing an option in the menu does not perform any task. In order to process menu commands, you
have to redefinen_menu_commarflom WEL_COMPOSITE_WINDOW his procedure has adNTEGER

argument which identifies the option selected by the user (the same as you have specified in the resources or in
main_mendunction).

A very basic implementation @ih_menu_commarmbuld be the following:

on_menu_commar({chenu_id INTEGER is
-- menu_idhas been selected.
do
inspect
menu_id
when Cmd_newhen
warning_message_bdg&~eature not implemented.'New’)
when Cmd_opeithen
warning_message_bd@X~eature not implementéd."Open)
when Cmd_savéhen
warning_message_bd@X~eature not implementéd.'Save)
when Cmd_exithen
warning_message_bdx~eature not implementéd."Exit")
when Cmd_line_thicknegken
warning_message_bd@XFeature not implementéd.Line thicknesy
end
end;

For instance, if you choose option New in the File mé&mngyre 14 shows what you will get.

43

Figure 14

My application

To make things more interesting, the application will process New option as it should be: Delete all the lines and
forces a repainting of the screen. Since there are no lines to redraw, the screen becomes blank. Replace the call to
warning_message_bdoy the following code:

when Cmd_newhen
lineswipe_ouf
invalidate

It is easy to respond to the Exit selection by destroying the main window as follows:
when Cmd_exithen
if closeableghen
destroy
end

You can also move the code fran_right_button_dowmvhich brings up line thickness dialog box to
on_menu_commartd respond to the Line thickness selection (ident@ierd_line_thickne3ds

44

Step 8: Storing the drawing in a file

Since that you have got a data representation of the drawing, you should be able to transfer that data into a file and
read it back. You will also use standard dialog boxes to get file names from the user.

You are going to use claS8§ ORABLHrom EiffelBase to save and read data of the drawing. But first, you need to
create the following abstraction in order to be able to save the linked list of points.

class
LINES

inherit
LINKED_LIST[LINE];
STORABLE

creation
make

end -- classLINES

In MAIN_WINDOWYyou need to change the definitionlioles from:
lines LINKED_LIST[LINE];

into:
lines LINES

The application will show standard dialog boxes in response to the user's selection of Open and Save to get the file
name which will be used for the operation. The following attributes need to be addatNNnWINDOW

open_dialogWEL_OPEN_FILE_DIALOG
-- Standard dialog box to open a file.

save_dialogWEL_SAVE_FILE_DIALOG
-- Standard dialog box to save a file.

45

Now, you are ready to implement Open and Save optioos imenu_comman@asically, the file name is
retrieved from the standard dialog box and used to stwee(by namjeor read (etrieve_by namethe data.
Extension .DRW is adopted for the files (procedwes filterandset_default_extensipn

on_menu_commar({chenu_id INTEGER is
-- menu_idhas been selected.
do
inspect
menu_id

when Cmd_opetthen
if open_dialog= voidthen
Il open_dialognake
open_dialogset_filter(<<"Draw file">>, <<™*.drw">>);
open_dialogset_default_extensiqiidrw")
end;
open_dialogactivate(Curren);
if open_dialogselectedhen
lines?=linesretrieve_by naméopen_dialodile_namé;
invalidate
end
when Cmd_savéhen
if save_dialog- voidthen
Il save_dialognake
save_dialogset_filter(<<"Draw file">>, <<"*.drw">>);
save_dialogset_default_extensididrw™)
end;
save_dialogactivate(Currend;
if save_dialogelectedhen
linesstore_by namésave_dialodile_namé
end
end

end;

Figure 15 shows the standard open dialog box as it appears when the user chooses the Open option.

Figure 15

ok,

Here is the end of the tutorial, we hope that you have plenty of ideas to improve your application!

47

