
§H110

> 35) p. 66. This is embarassing but I'm not sure I've ever understood
> deep equality. Consider the figure on p. 90 of OOSC. I believe that
> under the definition of deep equal in the Reference, the object
> referenced by (a) under (1) in the figure is deep equal to the object
> referenced by (b) under (2). Yet this _really_ doesn't feel right.
> For another example see the figure on p. 296 of E:TL. Are not OX and
> OY deep equal under this definition?
> What am I missing?

You are probably right. This needs to be discussed further.

> 36) p. 68, bottom box. Is standard_equal defined anywhere?

Did not do anything.

> 37) p. 69 line 2 in box. Remove \()
>
> 38) p. 72 line 10. "the feature of a call" should read "the feature name
> of a call".

Done: "the name of the feature of the call".

> 39) p. 73. The Array type rule seems out of place here.

Done.

> 40) p. 75 line -2. Need to be careful here as an Equality_expression can
> be either = or /=.

Done.

> 41) p. 77 line 6. Is "extended form" defined?

Did not do anything.

> 42) p. 84 line -14. remove ..1W.

Done.

> 43) p. 85 line 9. I'm assuming the "written backwards" phrase is there to
> guarantee that underscores appear in the proper places. If that's the case
> shouldn't this phrase be attached to the fractional part, not the integral
> part?

Done.

> Hope this is useful,
>
> -- Jim

§H 109

Thanks.

> 22) p. 34 line -14ff. Do we need this text? The bullets at the bottom
> seem to say the same thing only more precisely and concisely.

Done.

> 23) p. 35, Semantics of Assertions. My understanding is that there
> is a "gentlemen's agreement" among the vendors that assertion checking is
> turned off while the system is in the midst of checking an assertion.
> Is this true? What are the tradeoffs involved? We obviously need to
> address this issue.

Done.

> 24) p. 36, undefining a feature. I don't believe the semantics of
> undefine are clearly laid out in either E:TR or E:TL. Certainly there
> is no semantics margin note in this section in E:TL. We need to add one
> to the Reference. We can use the wording of E:TL, p. 155, lines -17 - -14
> I believe.

Did not do anything.

> 25) p. 39, under the defintiion of declared type. "has a declared type as"
> should read "has a declared type, dt, as".

Done.

> 26) p. 43, definition of potentially ambiguous. Doesn't the second
> bullet subsume the first (this has bothered me for a while)? What am
> I missing?

I don't see the problem.

> 27)p. 46, under Constrained Genericity Rule. Remove \n(Qt).

Done.

> 28) p. 49, Under signature conformance. Do we not also need a bullet
> apecifying the conformance of the Result types?

I think it's taken care of by the rule's wording.

> 29) p. 52 in the Conditional box. Shouldn't the second line read
> something like Then_part_list = Then_part {elseif then_part_list}*?

No, I don't think so.

> 30) p. 53 line -1. "." should read ".."

Done.

> 31) p. 57 line -13. "to a routine" should read "to an exception".

Done.

> 32) p. 57 line 10. "type exception" should read "type of exception".

Done (actually was line -10).

> 33) p. 61. The unique box seems out of place here.

Did not do anything.

> 34) p. 63 line 16. Remove parenthetical expression.

Done.

§H108

Done.

> 11) p. 27 line 4. "expanded, of" should read "expanded, or".

Done. (``exported'' rather than ``expanded''.)

> 12) p. 27 line 12. "available to S" should read "available to C".

Done.

> 13) p. 28 definition of secret. Shouldn't features within feature{NONE}
> declarations also be considered secret?

Done.

> 14) Section 7.13 in E:TR is missing some of the semanics included
> in E:TL, namely the part that gives the semantics of a new_exports
> clause. We either need to add this section or go with Neil's suggested
> change.

Did not do anything.

> 15) p. 28. I am not sure how much we should say about short forms
> in the Reference, if anything. My own bias would be to include a pretty
> complete description as a signal to vendors that any tool they provide
> that extracts the short form needs to extract at least some minimal
> elements to be worthy of the name. If we go this route we should probably
> define short, flat, and flat-short separately.

Did not do anything.

> 16) p. 29, in the margin. The name of the validity constraint just above
> VREG is either missing or obscured.

Done.

> 17) p. 30 line 11 and 14. I don't believe the word "initialization" has
> been defined in this context. I assume it refers to initializing local
> variables to their defaults....

Done.

> 18) p. 30, under Local Entity rule. Should not VRLE include no repetition
> of feature names within the same Entity_declaration_list?

This is taken care of separately by VREG, currently page 29.

> 19) p.33, under Old Expression. There is some ambiguity as to what
> should happen in an expression of the form a and then old b. In particular
> both ISE and Tower implementations blow up at runtime when they enter
> a routine whose postcondition involves such an expression if b is not
> currently defined. I believe the semantics should include a clear statement
> that the computation of "old anything" should not cause a runtime error
> unless that clause is actually needed to evaluate the postcondition. In the
> example the inability to compute old b should not generate an exception
> unless 'a' is true when the postcondition is evaluated. If we agree on this
> I'll try to draft the appropriate wording.

Did not do anything.

> 20) p. 33, under class invariants. I recomend we delete number (2). I don't
> believe any vendor supports this as yet, and if we later agree that
> attributes can have associated assertions, this rule will be obsolete.
> If we do not so agree then we can take up this issue again.

Did not do anything (disagree).

> 21) p. 33 line -3. I'm glad to see the change (including post_p) in this
> definition.

§H 107

H Comments by James McKim

The following is an extract from a posting by James McKim to the NICE Language
committee (30 May 1996). His comments are prefixed by >; the actions (or lack thereof)

taken for the present revision follow each of his points.

> Date: Tue, 30 May 1995 17:19:59 -0400
> From: jcm@mstr.hgc.edu (James McKim)
> Subject: Eiffel: the Reference
> To: NICE-ESG-Lang@atlanta.twr.com

[Other parts of message removed.]
>
> Some preliminary comments, errata, suggestions, questions etc.
>
> 1) p. 5 line -10. "document were" should read "document where"

Done.
>
> 2) p. 7 line 7. "ofEiffel" should read "of Eiffel"

I could not find this.

> 3) p. 14 line -4. Remove .1Y. There are actually a few places where
> what I take to be FrameMaker command syntax appears. Will a spell
> check find these?

Done. These are actually leftovers from an earlier troff version.
I have run a spellcheck on the new version and fixed a number of
typos.

> 4) p. 19 bottom. Should be not|"+"|"-", I think.

Done.

> 5) p. 19 bottom. The "^" appears twice and the '/' is missing.

Done.

> 6) p. 20 top two bullets. "upper name" has been defined at this point,
> but "lower name" has not.

Moved the definition earlier in the book.

> 7) p. 22 in box. Remove .xk.

Done.

> 8) p. 26. The definition of client at the top of the page combined with
> part (1) of the definition of generic client at the bottom. Seems to
> be circular. What am I missing?

I don't think its circular - just mutually recursive.

> 8) p. 26, definition of client. Rephrase as "A class C is a client of a
> type S ..." That is, add the word "type".

Done.

> 9) p. 26 line 8. "of base type B" should read "of base class B".

Done.

> 10) p. 26 line 10. This line didn't get formatted correctly.

§G.4106

§G.4 105

G.4

2 << >> (for manifest arrays).

1 ; (semicolon as separator between an Assertion_clause and the next)

§G.2104

G.2 RESERVED WORDS

G.4 OPERATORS AND THEIR PRECEDENCE

alias all and as BIT BOOLEAN

CHARACTER check class creation Current debug

deferred do DOUBLE else elseif end

ensure expanded export external false feature

from frozen if implies indexing infix

inherit inspect INTEGER invariant is like

local loop NONE not obsolete old

once or POINTER prefix REAL redefine

rename require rescue Result retry select

separate STRING strip then true undefine

unique until variant when xor

Level Symbol

12 ● (Dot notation for Unqualified_call expressions)

_

old (in postconditions) strip

11 not unary + unary –

All free unary operators

_

10 All free binary operators

9 ^ (power)

8 * / // (integer division) \\ (integer remainder)

7 binary + binary –

6 = /= (not equal) < > <= >=

5 and and then

4 or or else xor

3 implies

§G VISIBLE FEATURES 103

G Reserved words, special symbols,
operator precedence

§D.12102

D.12 SPECIFYING EXTERNAL ELEMENTS

D.13 GENERATION

D.14 VISIBLE FEATURES

Externals external

{Language_contribution ";" ...}

Language_contribution Language ":" File_list

Language Eiffel | Ada | Pascal |

Fortran | C | Object | Make |

Name

Generation generate {Language_generation ";" ...}

Language_generation Language [Generate_option] ":" Target

Generate_option "(" Generate_option_value ")"

Generate_option_value yes | no

Target Directory | File

Visible visible {Class_visibility ";" ...}

Class_visibility Class_name [Visibility_adaptation]

Visibility_adaptation [External_class_rename]

[Creation_restriction]

[Export_restriction]

[External_feature_rename]

end

External_class_rename as Name

External_feature_rename as Name

Creation_restriction creation {Feature_name "," ...}

Export_restriction export {Feature_name "," ...}

External_feature_rename rename External_rename_list

External_rename_list {External_rename_pair "," ...}

External_rename_pair Feature_nameas Name

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§D.11 SPECIFYING OPTIONS 101

Option Governs Possible
values

Default Default

assertion Level of assertion
monitoring and
execution of Check
instructions.

no, require,
ensure,
invariant , loop,
check, all

all Monitoring at each
level in this list also
applies to the
subsequent levels
(ensure implies
precondition checking
etc.). Valueinvariant
means class invariant;
loop means
monitoring of loop
invariants and of loop
variant decrease;
check adds execution
of check instructions;
all means the same as
check.

collect Garbage collection no, yes

debug Execution of Debug
instructions

no, yes, all or a
Name
representing a
Debug_key.
Valueyes
means the
same asall

optimize Optimization of
generated code

no, yes, all, or
a Name
representing a
specific
optimization
level offered
by the
compiler.

In the Defaults or
Options clause for a
given cluster,yes
governs class-level
optimization andall
means the same as
yes. In the Ace-level
Defaults clause,yes
governs systemwide
optimization, andall
means the same as
yes plus class-level
optimization.

trace Generation of run-
time tracing
information for
every call to, and
return from, routines
of classes to which
the option applies.

no, yes or all.
Valueyes
means the
same asall.

§D.11100

D.11 SPECIFYING OPTIONS

A Target_list may only appear in an Options paragraph, not in a Defaults paragraph. A
System_tag may only appear in an Ace-level Defaults clause.

Defaults default {Option_clause ";" ...}

Options option {Option_clause ";" ...}

Option_clause Option_tag [Option_mark] [Target_list]

Target_list ":" {Class_name "," ...}+

Option_tag Class_tag | System_tag

System_tag collect | Free_tag

Class_tag assertion | debug | optimize | trace |

Free_tag

Free_tag Name

Option_mark "(" Option_value ")"

Option_value Standard_value | Class_value

Standard_value yes | no | all | Free_value

Class_value require | ensure |

invariant | loop | check |

Free_value

Free_value File_name | Directory_name | Name

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

VDOC

§D.8 STORING PROPERTIES WITH A CLUSTER 99

D.8 STORING PROPERTIES WITH A CLUSTER

To keep things simple, the Cluster_properties part contained in a Use file may not itself
contain a Use paragraph.

D.9 EXCLUDING AND INCLUDING SOURCE FILES

D.10 ADAPTING CLASS NAMES

[Defaults]

[Options]

[Visible]

end ["--" cluster Cluster_name]

Use use File

File Name

Include include File_list

Exclude exclude File_list

File_list {File ";" ...}

Name_adaptation adapt Cluster_adaptation_list

Cluster_adaptation_list {Cluster_adaptation ";" ...}

Cluster_adaptation Cluster_ignore |

Cluster_rename_clause

Cluster_ignore Cluster_name ":"ignore

Cluster_rename_clause Cluster_name ":"

rename Class_rename_list

Class_rename_list {Class_rename_pair "," ...}

Class_rename_pair Class_nameas Class_name

=
∆

=
∆

VDUC

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§D.698

D.6 ACE STRUCTURE

D.7 BASICS OF CLUSTER CLAUSES

Ace System

Root

[Defaults]

[Clusters]

[Externals]

[Generation]

end ["--" system System_name]

System system System_name

System_name Name

Root root

Class_name

[Cluster_mark]

[Creation_procedure]

Class_name Name

Cluster_mark "(" Cluster_name ")"

Cluster_name Name

Creation_procedure ":" Name

Clusters cluster {Cluster_clause ";" ...}

Cluster_clause [Cluster_tag]

Directory_name

[Cluster_properties]

Cluster_tag Cluster_name ":"

Directory_name Name

Cluster_properties [Use]

[Include]

[Exclude]

[Name_adaptation]

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§D OVERVIEW 97

D Specifying systems in Lace

D.1 OVERVIEW

Language processing tools need a specification of where to find the classes and what to
do with them.

Such a specification is called an Assembly of Classes in Eiffel, or Ace for short.
This appendix presents a notation, the Language for Assembling Classes in Eiffel, or
Lace, for writing Aces.

This appendix describes Lace.

D.5 Basic conventions

Here is the list of Lace keywords.

A consistency condition applies to names used in an Ace: the Cluster_name must
be different for each cluster. It is valid, however, to use the same identifier in two or more
of the roles of Cluster_name, System_name, Class_name.

adapt all as check cluster creation

default end ensure exclude export external

generate ignore include invarian
t

keep loop

no option require rename root system

use visible yes.

Name Identifier | Manifest_string=
∆

VDCN

§25.1596

§25.15 CHARACTERS 95

32 Basic classes

The basic classBOOLEAN, CHARACTER, DOUBLE, INTEGER and REAL describe
arithmetic objects; classPOINTER describes opaque objects representing addresses to be
passed to non-Eiffel software. The specification of these classes may be found in the
Proposed Eiffel Library Kernel Standard.

§25.1594

31 Input and output

ClassesFILE and STANDARD_FILESprovide input and output facilities. Their
specification may be found in the Proposed Eiffel Library Kernel Standard.

§25.15 CHARACTERS 93

30 Persistence and environments

ClassSTORABLEprovides a mechanism for storing and retrieving object structures. Its
specification may be found in the Proposed Eiffel Library Kernel Standard.

§25.1592

29 Exception facilities

The Kernel Library classEXCEPTIONSprovides a number of features for fine control of
the exception handling mechanism. Their specification may be found in the Proposed
Eiffel Library Kernel Standard.

§25.15 CHARACTERS 91

28 Arrays and strings

Arrays and strings are instances of the Kernel Library classesARRAY andSTRING. The
specification of these classes may be found in the Proposed Eiffel Library Kernel
Standard.

§25.1590

27 Universal features

The universal features are those of classGENERAL. They are specified in the Proposed
Eiffel Library Kernel Standard.

§25.15 CHARACTERS 89

C3 • The sequence%/code/, where code is an unsigned integer, representing the
character of codecode. For example in ASCII%/59/ represents the character of code
59, which is the semicolon.

The table of special character codes for form C2 is the following._

Special characterCharacter
Code

Mnemonic name

@ %A At-sign

BS %B Backspace

^ %C Circumflex

$ %D Dollar

FF %F Form feed

\ %H backslasH

tilda %L tiLda

NL (LF) %N Newline

‘ %Q [back] Quote

CR %R [carriage] Return

%S Sharp

HT %T [horizontal] Tab

NUL %U nUll character

| %V Vertical bar

% %% percent

’ %’ single quote

" %" double quote

[%(opening bracket

] %) closing bracket

{ %< opening brace

} %> closing brace

§25.1388

An Integer is a sequence of characters, each of which must be either:

• A decimal digit (0 to 9).

• An underscore (_), which may not be the first character.

If any underscore is present, then there must be three consecutive digits to the right
of every underscore, and there must not be any consecutive group of four digits.

Underscores, if any, have no effect on the integer value associated with the integer.

25.13 REAL NUMBERS

A real number is made of the following elements:

• An optionalInteger written backwards,Integer, giving the integral part. (If this is
absent, the integral part is 0.)

• A required “● ” (dot).

• An optionalInteger, Integer written backwards,which gives the fractional part. (If
this is absent, the fractional part is 0.)

• An optional exponent, which is the lettere or E followed by an optional sign (+ or
–) and an Integer. The Integer is required if thee or E is present. This indicates that
the value appearing before thee or E must be scaled by 10 sup n, wheren is the
given integer.

No intervening character (blank or otherwise) is permitted between these elements.
The integral and fractional parts may not both be absent. If underscores are used in either
the integral part or the fractional part, they must also appear in the other part, unless it
has three digits or less.

Underscores, if any, have no effect on the integer value associated with the integer.

25.14 BIT SEQUENCES

A Bit_sequence is a sequence of digits 0 or 1, followed by ab or B, with no other
intervening characters.

25.15 CHARACTERS

Definition: character

A character is one of the following.

C1 • Any key associated with a printable character, except for the percent key%. (The
% key plays a special role for cases 2 and 3.)

C2 • The sequence %k, wherek is a one-key code taken from the table given below. This
is used to represent special characters such as the Backspace, represented as%B, or
characters which are not available on all keyboards, or have different codes on
different keyboards. An example is the opening bracket: when supported by the
keyboard, this character may be entered using form C1 as [; it may also, in all cases,
be represented as%(.

§25.11 STRINGS 87

The printable characters include letters, digits, underscore, the four characters
permitted as first character of a Free_operator and other special characters such asstar, \
and$. They exclude Blank, New Line, Backspace and other characters with no external
representation.

When used in expressions, the standard operators have various precedence levels,
as given in the discussion of expressions; free operators all have the same precedence,
higher than that of the standard operators.

Examples of free operators, used as function names, were given in the discussion of
features. A simple one is @, used in infix form as a synonym foritem for array access:a
@ i is thei-th element ofi.

The Basic Libraries contain only a small number of uses of free operators: @ for
element access in arrays and strings, # for rotation in bit sequences. Free operators are
mostly intended for developers in application areas that have a tradition of specialized
notations, such as physics and mathematics. The form of a free operator should attempt
to suggest its meaning, just as with a well chosen identifier.

The first character of a Free_operator must be one of only four possibilities, not
used by any other construct of the language. As a result, any free operator will stand out
clearly from its context, and no confusion or ambiguity is possible.

25.11 STRINGS

Definition: string

A String — a specimen of construct String — is an arbitrary sequence of characters.
A Simple_string — a specimen of Simple_string — is a String which consists of at
most one line (that is to say, has no embedded new-line character).

Do not confuse String or Simple_string with Manifest_string, seen in the discussion
of expressions. A specimen of Manifest_string, a non-terminal construct, is a Simple_
string enclosed in double quotes, as in"SOMESTRING". .lW STRING". In the definition
of String, a “character” is a legal Eiffel character as defined later in this chapter. This
includes in particular:

• Any keyboard key other than%.

• Any special character described as%l for some appropriate letterl (for example%B
representing the Backspace character).

• A character given by its numerical code under the form %/code/ (for example
%/35/ for the sharp sign #, which is the character of ASCII code 35).

25.12 INTEGERS

Definition: integer

Integer, a variable lexical construct, describes unsigned integer constants in decimal
notation.

Except for underscores, no intervening characters (such as blanks) are permitted
between digits.

§25.986

function, may be used in lieu of a local entity, for example as target of an
assignment, and the basic typeINTEGER may appear at a position where a type is
expected.

No intervening blanks or other characters are permitted between the letters of a
reserved word. Letter case is not significant for reserved words (so thatCLASS, result or
evenrEsULt are permissible forms of some of the above examples.)

25.9 IDENTIFIERS

An Identifier is a sequence of one or more characters, of which the first is a letter and each
of the subsequent ones, if any, is a letter, a decimal digit (0 to 9) or the underscore
character “_”

The definition indicates that the first character of an identifier must be a letter; in
particular, an identifier may not begin with an underscore. Also, no intervening blank is
permitted within an identifier. The validity constraint is obvious:

An identifier is valid if and only if it is not one of the language’s reserved words.

There is no limit to the length of identifiers, and all characters are significant; in
other words, to determine whether two identifiers are the same or not, you must take all
their characters into account.

Letter case is not significant for letters: if you write two identifiers asa andA, or
lInKeD_liST andLINKED_LIST, they are considered the same. The recommended style
includes some standard conventions: class names and other type names in upper-case (as
in LINKED_LIST); names of routines, variable attributes and local entities in lower-case
(as initem); names of constant attributes and predefined entities with an initial upper-case
letter and the rest in lower case (as inAvogadro or Result). Definition: upper name, lower
name the form of an identifier written all in upper-case is called the upper name of the
identifier; the form all in lower-case is called its lower name.Result).

25.10 OPERATORS

When it comes to defining a function with one or two arguments, you may wish to use a
prefix or infix name.

Definition: operator

The names that may come in double quotes after infix (or prefix), and will be used
in the corresponding operator expressions, are called operators.

There are two kinds of operators: standard and free.

A Free_operator is not as free as the name would seem to suggest:

Definition: free operator

A Free_operator is sequence of one or more characters, whose first character is any one of

@ # | &

and whose subsequent characters, if any, may be any printable characters.

VIRW

§25.5 TEXT LAYOUT 85

In both cases the form is the same: a comment is made of one or more line segments,
each beginning with two consecutive dash characters -- and extending to the end of the
line.

25.5 TEXT LAYOUT

An Eiffel text is a sequence; each of the elements of the sequence is a break, a
comment or a token.

You may always insert a break between two sequence elements without affecting
the semantics of the text.

A break is not required between two adjacent elements if one is a comment and the
other a token or another comment. Between two successive tokens, a break may be
required or not depending on the nature of the tokens.

We may divide tokens into two categories:

Definition: symbol, word

• A symbol is either a special symbol of the language, such as the semicolon “;” and
the ● of dot notation, or a standard (non-free) operator such as + andstar, but not
including the alphabetic operators (such asor else andnot).

• A word is any token which is not a symbol.

It is permitted to write two adjacent tokens without an intervening break if and only if
one is a word and the other is a symbol.

25.6 TOKEN CATEGORIES

There are two categories of tokens, fixed and variable:

• Fixed tokens have a single, frozen form. They include reserved words such asclass
or Current, containing letters only, and special symbols such as := or {, containing
non-alphabetic characters.

• Variable tokens are specimens of terminal constructs such as Integer, Identifier or
Free_operator.

25.7 RESERVED WORDS

Reserved words includekeywords andpredefined names:

• Keywords, such asclass or feature, serve to introduce and delimit the various
components of constructs.

• Predefined names come at positions where variable tokens would also be
permissible: for example, the predefined entityResult, denoting the result of a

Comment "--" {Simple_string Comment_break ...}

Comment_break New_line [Blanks_or_tabs] "--"

=
∆

=
∆

§25.284

25 Lexical components

25.2 CHARACTER CATEGORIES

The discussion will rely on a classification of characters into letters, digits and other
categories. To start with, it is useful to have a precise although obvious definition:

Definition: letter, digit, alphabetic, Printable

A letter is one of the twenty-six elements of the Roman alphabet, lower-case or upper-
case:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A decimal digit is one of the ten characters0 1 2 3 4 5 6 7 8 9

An alphabetic character is a letter, a digit, or an underscore _.

A printable character is any one of the characters listed as printable in the definition
of the ASCII character set.

25.3 BREAKS

Definition: break character, break

A break is made of a sequence of one or more of the following characters, known
as break characters:

• Blank (also known as space).

• Tab.

• New Line (also known as Line Feed).

25.4 COMMENTS

Definition: comment

Comments may be expected or free:

• An expected comment is a specimen of the construct Comment, appearing in the
syntax as an optional component of some construct. An example is the Header_
comment of a Routine.

• Free comments, on the other hand, may appear at almost any position in a class text,
and are not covered by the syntax productions.

§24.7 THE CECIL LIBRARY 83

eif_bit_length(your_bit)

eif_bit_clone(your_bit)

Hereposition is an integer index which must be in the range of the bit sequence
(counted from 1); otherwise the first two calls have undefined results, andeif_bit_ith
returnsEIF_NO_BIT. Routineseif_bit_set and eif_bit_clear set the element of index
position to 1 and 0, respectively. Functioneif_bit_ith returns an integer, the value of the
element of indexposition. Functioneif_bit_length returns an integer, the length of the
sequence. Functioneif_bit_clone returns anEIF_BIT, a fresh copy of the bit sequence
passed as argument.

§24.782

The next Cecil facility enables the C side to access fields of complex objects,
corresponding to attributes of the generating classes. To obtain a field of an object, use
the macroeif_field. You may use the result ofeif_field in two different ways: as an
expression, or “r-value” in C terminology; or as a writable entity, or “l-value”, which may
then be the target of an assignment. Such an assignment will re-attach the corresponding
object field.

Functioneif_field takes three arguments. The first is a value of typeEIF_OBJ,
representing an object; do not forget to protect it byeif_access. The second is a string
giving the name of the desired attribute. The third is one of the following values,
describing the type of the attribute:

EIF_BOOLEAN
EIF_CHARACTER
EIF_INTEGER
EIF_REAL
EIF_DOUBLE
EIF_POINTER
EIF_REFERENCE

The result ofeif_field is undefined if the object does not have a field with the given
name and type.

To call an Eiffel function returning a Bit_type result, use this scheme:

EIF_BIT your_bit; EIF_FN_BIT your_function;
...
your_function = eif_fn_bit (function_name, type_id);
your_bit = (your_function) (eif_access (object), actual_1, actual_2, ...)

The last instruction assigns toyour_bit a reference to the bit sequence returned by the
function.EIF_BIT describes a pointer type.

Similarly, you may access and modify Bit_type fields as follows:

EIF_BIT your_bit1, your_bit2;
...
your_bit1 = eif_bit_field (eif_access (your_object), "some_bit_attribute");
eif_bit_set_field (eif_access (your_object), "some_bit_attribute", your_bit2);

Here two primitives are needed. Functioneif_bit_field takes two arguments, an
object pointer (returned byeif_access) and an attribute name. In contrast witheif_field,
the result ofeif_bit_field may only be used as an expression (r-value), not as a writable
variable. To change the value of a Bit_type field, useeif_bit_set_field, whose last
argument is the new value, of typeEIF_BIT. If the object has no appropriate Bit_type
field, eif_bit_field returns the valueEIF_NO_BFIELD and the effect ofeif_bit_set_field
is undefined.

The following primitives are applicable toyour_bit of typeEIF_BIT:

eif_bit_set(your_bit, position) eif_bit_clear(your_bit, position) eif_bit_ith (your_
bit, position) eif_bit_length(your_bit) eif_bit_clone(your_bit)

eif_bit_set(your_bit, position)

eif_bit_clear(your_bit, position)

eif_bit_ith (your_bit, position)

§24.7 THE CECIL LIBRARY 81

it in a C variableyour_id, use the functioneif_type_id, which returns a result of typeEIF_
TYPE_ID:

EIF_TYPE_ID your_id;

...

your_id = eif_type_id("CLASSNAME");

If the class is generic, replace the last instruction by

your_id = eif_generic_id("CLASSNAME", gen1, gen2,...);

 wheregen1, gen2,... are type-ids corresponding to the desired actual generic parameters.
Functioneif_generic_id has a variable number of arguments; the number of arguments
following the first one ("CLASSNAME") must match the number of formal generic
parameters of the class of nameCLASSNAME.

The result returned byeif_type_id or eif_generic_id describes a type which is
expanded if and only ifCLASSNAME is declared in Eiffel asexpanded class. To force a
result describing an expanded type, applyeif_expanded to the result of either function;
the result is another type-id. All these functions return as result the error codeEIF_NO_
TYPE if they cannot compute a type-id (no class with the given name in the universe,
more than one class, wrong number of generic parameters). It is possible to create an
object from C, using the functioneif_create which takes anEIF_TYPE_ID argument and
returns anEIF_OBJ. Here is the list of functions used for calling the various kinds of
Eiffel features from C, with their types and template arguments:

EIF_PROC eif_proc(routine_name, type_id)

EIF_FN_BOOL eif_fn_bool(routine_name, type_id)

EIF_FN_CHAR eif_fn_char(routine_name, type_id)

EIF_FN_INT eif_fn_int(routine_name, type_id)

EIF_FN_REAL eif_fn_real(routine_name, type_id)

EIF_FN_DOUBLE eif_fn_double(routine_name, type_id)

EIF_FN_POINTER eif_fn_pointer(routine_name, type_id)

EIF_FN_REF eif_fn_ref(routine_name, type_id)

In all cases the arguments are a string, representing a routine name, and a type-id
(obtained througheif_type_id or eif_generic_ic):

char starroutine_name; EIF_TYPE_ID type_id;

These functions look for a routine of nameroutine_name in the base class of the
type corresponding totype_id. If no such routine exists, the result is a null pointer.
Otherwise it is a pointer to a C function representing the desired routine; you may then
call that function on appropriate arguments.

There is a major difference between the Eiffel call and its C emulation: Cecildoes not
apply dynamic binding. What you get fromeif_proc or one of its sisters is a pointer to
a function representing the exact Eiffel routine of the given name in the given class. In
the presence of polymorphism and redeclaration, the Eiffel call may trigger a different
version ofgo depending on the type of the object attached toyour_list at the time the call
is executed. The C form will always call the same version, regardless of the object’s type.

§24.380

24 Interfaces with other languages

24.3 EXTERNAL ROUTINES

24.5 ARGUMENT AND RESULT TRANSMISSION

For external routines, follow thethe semantics of direct reattachment, interpreted as if
each formal argument were declared withexactly the same type as the corresponding
actual.

24.6 PASSING THE ADDRESS OF AN EIFFEL FEATURE

An argument of the Address form is of typePOINTER.

The validity constraint on actual arguments of the Address form is clause 4 of the
argument validity rule, which makes$ f valid as actual argument to a call if and only iff
is the final name of a feature of the enclosing class, and that feature is not a constant
attribute (which has no address).

If the rule is satisfied, the feature will have a versiondf applicable to the current
object: this is the version off for the current object’s generator (taking into account
possible renaming and redefinition). The value passed for attachment to the
corresponding formal argument is the address ofdf. This applies to both routines and
variable attributes; for an attribute, the call will pass the address of the field
corresponding todf in the current object.

24.7 THE CECIL LIBRARY

This section describes a library for interfacing with C software: Cecil.

The Cecil library contains macros, functions, types and error codes. All have names
beginning with eithereif_ (functions and macros) orEIF_ (types and error codes);
examples are the functioneif_type_id and the typeEIF_PROC, explained below. Their
declarations appear in a C “header file”,cecil● h, which you may add to a C program
through the C preprocessor directive

#include <cecil● h>

Let us now look at the principal facilities declared incecil● h. First of all, the C side
will need to refer to Eiffel types. It will know a type through a “type-id”, of typeEIF_
TYPE_ID. To obtain a type-id for a non-generic class of nameCLASSNAME and record

External external Language_name [External_
name]

Language_name Manifest_string

External_name alias Manifest_string

=
∆

=
∆

=
∆

VZAA

§23.21 STRIP EXPRESSIONS 79

to attributesa1, ...,an, appearing in an order which only depends on classC (that is to say,
is the same for all possible values of the object CO).

§23.1778

23.17 CHARACTER CONSTANTS

The value of a Character_constant is its middle Character.

23.18 MANIFEST STRINGS

A Manifest_string is valid if and only if it satisfies the following two conditions:

1 • None of the characters of its associated Simple_string is a double quote.

2 • In the extended form, no characters other than blanks or tabs may appear before the
initial % sign on the second and subsequent lines.

23.20 MANIFEST ARRAYS

Manifest Array rule

A Manifest_array <<e1, e2, ... en>> is a valid expression of typeARRAY [T] if and only
if the type of everyei conforms toT.

The value of a Manifest_array made ofN expressions is an array of bounds 1 andN,
whose elements are the values of the successive expressions in the Manifest_array. In this
definition, an “array” is an instance of the Kernel Library classARRAY.

23.21 STRIP EXPRESSIONS

A Strip expression appearing in a classC is valid if and only if its Attribute_list satisfies
the following two conditions:

1 • Every Identifier appearing in the list is the final name of an attribute ofC.

2 • No Identifier appears twice in the list.

Consider the evaluation of a Strip expression as part of a call to a routiner, whose
origin is a classC. Let a1, ..., an be the set containing all the attributes ofC except for
those listed in the Attribute_list, if present, of the Strip expression. Let CO be the current
object for the call (CO is an instance, not necessarily direct, of a type based onC). Then
the value of the expression is an array whose elements are the fields of CO corresponding

Bit_constant Bit_sequence

Manifest_array "<<" Expression_list ">>"

Expression_list {Expression "," ...}

Strip strip "(" Attribute_list ")"

Attribute_list {Identifier "," ...}

=
∆

=
∆

=
∆

VWMA

=
∆

=
∆

VWST

§23.11 ENTITIES 77

An Equality expressionwritten with= andinvolving two bit sequences yields true
if and only if, after right-padding if necessary, they are bit-by-bit identical.

23.11 ENTITIES

Identifier rule

An Identifier appearing in an expression as part of the text of a routiner in a classC,
either by itself or as the target or actual argument of a Call, must be the name of a feature
of C, a local entity ofr, or a formal argument ofr.

The value of an entity of each possible form, evaluated during a call to the enclosing
routine, is defined as follows:

• The value of a Local entity (includingResult) results from the successive
instructions that may have been applied to the entity since the default initializations,
performed anew on each call.

• The value of a routine’s Formal argument is obtained, according to the rules of
direct reattachment, from the value of the corresponding actual argument at the time
of the current call. This value may not change for the duration of that call (although
fields of the attached object, if any, may change).

• The value ofCurrent is the current object.

23.12 CONSTANTS

A Constant_attribute appearing in a classC is valid if and only if its Entity is the final
name of a constant attribute ofC.

Constant = Manifest_constant | Constant_attribute

Constant_attribute = Entity

Manifest_constant Boolean_constant |

Character_constant |

Integer_constant |Real_constant |

Manifest_string | Bit_constant

Sign "+" | "–"

Integer_constant [Sign] Integer

Character_constant "’" Character "’"

Boolean_constant true | false

Real_constant [Sign] Real

Manifest_string ’"’ Simple_string ’"’

VWID

VWCA

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§23.776

Definition: multiary operator
Some binary operators are actually “multiary” — that is to say, may take three or
more operands, whose types all conform to the type of the first — while other
operators are limited to two arguments.

The semantics of an Operator_expression is simply the semantics of calls: the value of an
operator expression is the value that would be returned by the equivalent dot form. This is
complemented by a special rule seen below, semi-strict evaluation, for boolean operators.

23.7 ORDINARY BOOLEAN OPERATORS

The value ofnot a is true if and only ifa has value false. The others are binary operators;
the value they yield when applied to a first operand of valuev1 and a second operand of
valuev2 is defined as follows:

• For and: true if and only if bothv1 andv2 are false.

• For or: false if and only if eitherv1 or v2 is false.

• For xor: true if and only ifv1 andv2 have different values. In other words,a xor b
has the same value as (a or b) and not (a and b).

23.8 SEMI-STRICT BOOLEAN OPERATORS

For operands of valuesv1 andv2 these operators yield the following results:

• and then: false ifv1 is false, otherwise the value ofv2.

• or else: true if v1 is true, otherwise the value ofv2.

• implies: true if v1 is false, otherwise the value ofv2. (In other words,a implies b
has the same value asnot a or else b.)

23.9 ARITHMETIC OPERATORS AND THE BALANCING RULE

Arithmetic Expression Balancing rule

In determining the equivalent dot form of a Binary expression involving operands of
arithmetic types (one or more ofDOUBLE, REAL and INTEGER), first convert all
operands to the heaviest operand type occurring in the expression.

23.10 OPERATIONS ON BIT SEQUENCES

If b is a bit sequence,not b is a bit sequence of the same length, with a one at every
position whereb has a zero and conversely.

If sa andsb are bit sequences, each of the binary operators pads the shorter operand
with zeros on the right if necessary to reach the number of bits, N, of the larger. For any
positioni (1 ≤ i ≤ N) let a , b , a, b, c be thei-th bits ofsa , sa, sb, sc. Thenc is a one if
and only if:

• For and: a andb are ones.

• For or: a or b or both are ones.

• For implies: a is a zero, orb is a one, or both of these conditions.

• For xor: one amonga andb is a one and the other is a zero.

§23.2 GENERAL FORM OF EXPRESSIONS 75

23 Expressions and constants

23.2 GENERAL FORM OF EXPRESSIONS

A Boolean_expression is valid if and only if it is an Expression of typeBOOLEAN.

23.3 EQUALITY EXPRESSIONS

An Equality expression is valid if and only if either of its operands conforms to the other.

The expressione /= f has value true if and only ife = f has value false.

23.5 OPERATOR EXPRESSION SYNTAX AND PRECEDENCE
RULES

23.6 VALIDITY AND SEMANTICS OF OPERATOR EXPRESSIONS

An Operator_expression is valid if and only if its equivalent dot form is a valid Call.

Expression Call | Operator_expression | Equality |

Manifest_constant | Manifest_array |

Old | Strip

Boolean_expression Expression

Equality Expression Comparison Expression

Comparison "=" | "/="

Operator_expression Parenthesized | Unary_expression |

Binary_expression

Parenthesized "(" Expression ")"

Unary_expression Prefix_operator Expression

Binary_expression Expression Infix_operator Expression

=
∆

=
∆

VWBE

=
∆

=
∆

VWEQ

=
∆

=
∆

=
∆

=
∆

VWOE

§22.974

4 • If a routine ofC contains an Assignment of targetx and sourcee, the dynamic type
set ofx for T includes (recursively) every member of the dynamic type set ofe for T.

5 • If a routine ofC contains an Assignment_attempt of targetx, with type U, and
source e, the dynamic type set ofx for T includes (recursively) every type
conforming to UT which is also a member of the dynamic type set ofe for T.

6 • If a routine ofC contains a callh of targetta, U is (recursively) a member of the
dynamic type set ofta for T, andtf is the version of the call’s feature in the base class
of U, then the dynamic type set forU of any formal argument oftf includes every
member of the dynamic type set for UT of the corresponding actual argument inh.

7 • If h, tf andU are as in case 6 andtf is an attribute or function, the dynamic type set
of h for T includes (recursively) every member of the dynamic type set for UT of the
Result entity in tf.

Array type rule

To study the effect of array manipulations on dynamic type sets, assume that in class
ARRAY featureitem is an attribute, and thatput (v, i) andforce(v, i) are both implemented
as

item := v

§22.9 THE CALL VALIDITY RULE 73

22 Type checking

22.9 THE CALL VALIDITY RULE

Call rule

A call is valid if and only if it is both class-valid and system-valid.

Consider a single-dot call with targetx, appearing in a classC. Let S be the type of
x. Then:

1 • The call isclass-valid if it is export-valid and argument-valid forS.

2 • The call issystem-valid if for any elementD of the dynamic class set ofx it is
export-valid and argument-valid forD.

A call appearing in a classC, havingfname as thename of thefeature of the call, is
export-valid for a classD if and only if it satisfies either of the following two conditions.

1 • The call is an Unqualified_call andfname is the final name of a feature ofC.

2 • The call has at least one dot,D has a feature of namefname which is available toC,
and the call’s target is either a valid entity ofC or (recursively) a call which is
export-valid forD.

Consider an export-valid call of targettarget and feature namefname appearing in
a classC. (For an Unqualified_call taketarget to beCurrent.) LetST be the type oftarget,
S the base class ofST, andsf the feature of final namefname in S. Let D be a descendant
of S, anddf the version ofsf in D. The call is argument-valid forD if and only if it satisfies
the following four conditions:

1 • The number of actual arguments is the same as the number of formal arguments
declared fordf.

2 • Every actual argument, if any, conforms to thethecorresponding formal argument
of df.

3 • If target is itself a Call, it is (recursively) argument-valid forD.

4 • If any of the actual arguments is of the Address form$ fn, fn is the final name of a
feature ofC which is not a constant attribute.

The dynamic type sets of the expressions, entities and functions of a system result
from performing all possible applications of the following rules to every Class_typeT, of
base classC, used in the system.

1 • If a routine ofC contains a creation instruction, with targetx and creation typeU,
the dynamic type set ofx for T is {UT}.

2 • The dynamic type set forT of an occurrence ofCurrent in the text of a routine ofC
is {T}.

3 • For any entity or expressione of expanded type appearing in the text ofC, if the
type ET of e is expanded, the dynamic type set ofe for T is {ETT}. (Rules 4 to 7,
when used to determine elements of the dynamic type set of somee, assume thate’s
type is not expanded.)

VUGV

VUCS

VUEX

VUAR

§21.1472

effect of a qualified call of the forms● u, wheres is an expression andu is an
Unqualified_call, is defined (recursively) as the effect of a call of the formv● u,
executed after the assignmentv := target● s, v being a Writable entity used only for
this definition.

D5 • If df is a function, the call is syntactically an expression; the value of that expression
is the value of the entityResult on termination of the function’s execution.

D6 • If the values of any local entities have been saved under D2, restore these entities
to their earlier values. This terminates the execution.

§21.14 SEMANTICS OF CALLS 71

2 • If cr executes any construct other than a call, the current object and current routine
remain the same.

3 • If cr executes a qualified call of the formtarget● fname(...) where the valuetarget_
value of target is attached to an object OD, then for the duration of the call OD
becomes the new current object anddf, the routine deduced fromfname as discussed
earlier, becomes the new current routine. When the qualified call terminates, the
earlier CO andcr resume their roles as current object and current routine.

4 • Whencr executes an unqualified call, the current object remains the same, and there
is a new current routine for the duration of the call as in case 3.

21.14 SEMANTICS OF CALLS

Consider the execution, at a certain run-time instant, of a call

target● fname(y1, ..., yn)

To define its effect, calltarget_value the value oftarget at that instant.

The first possibility is fortarget_value to be void. Then the call cannot be executed
correctly; it will fail, triggering an exception.

For the exception raised in this case, the Kernel Library classEXCEPTIONS
introduces the integer codeVoid_call_target.

The rest of this section assumes thattarget_value is not void. Thentarget_value is
attached to some object OD, which must be a direct instance of some typeDT (for
“dynamic type”) based on some classD. LetST be the type of expressiontarget andS the
base class ofST. The rules of reattachment indicate thatDT conforms toST, and thatD is
a descendant ofS. Also, becauseDT has a direct instance OD,D must be an effective
class.

If the call is valid, the constraint on calls implies thatfname is the final name of a
featuresf of classS, available to the class which contains the call. Letdf be the version
of sf in D; dynamic binding means that the effect of the call is determined bydf, notsf. If
df is an external routine, the effect of the call is to execute that routine on the actual
arguments given, if any, according to the rules of the language in which it is written.

There remains to cover the case in whichdf is a non-external non-once routine (with
a Routine_body beginning with the keyworddo). Then the effect of the call is the effect
of the following sequence of steps.

D1 • If df has arguments, attach every formal argument to the value of the corresponding
actual argument, applying the semantics of direct reattachment.

D2 • If df has any local entities, save the current values of these entities if any call todf
has been started but not yet terminated; then initialize each local entity to the default
value of its base type.

D3 • If df is a function, initialize the predefined entityResult, again according to the
default initialization rules.

D4 • Execute the body ofdf. In this execution, evaluation of the entityCurrent will return
target_value; the effect of an Unqualified_callu, whereu is neitherCurrent nor
Result, is defined (recursively) as the effect of the qualified calltarget● u; and the

§21.370

21 Feature call

21.3 USES OF CALLS

• If the feature is an attribute or a function, the Call is syntactically an expression.

• If the feature is a procedure, the Call is an instruction.

21.6 FORM OF A CALL

21.12 EXECUTING THE BODY

To execute (or “run”) a system on a machine means to get the machine to apply a creation
instruction to the system’s root class.

Definition: current object

In all but trivial cases, the root’s creation procedure will create more objects and
execute more calls. This extremely simple semantic definition of system execution
has as its immediate consequence to yield a precise definition of the current object
and current routine. At any time during execution, the current object CO is the
object to which the latest non-completed routine call applies, and the current routine
cr is the feature of that call. They may be defined precisely as follows:

1 • At the start of the execution of a system, CO is theroot object (the instance of the
root class whose creation is the first act of system execution) andcr is the selected
creation procedure. (If the root class has no creation procedure, execution terminates
immediately.)

Call [Parenthesized_qualifier] Call_chain

Parenthesized_qualifier Parenthesized\0"Parenthesized "●"

Call_chain {Unqualified_call "●" ...}+

Unqualified_call Entity [Actuals]

Actuals "(" Actual_list ")"

Actual_list {Actual "," ...}

Actual Expression | Address

Address "$" Address_mark

Address_mark Feature_name |Current | Result

VKCN

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§20.14 RULES ON ASSIGNMENT ATTEMPT 69

Definition: dynamic type set, dynamic class set

The set of possible dynamic types for an entity or expressionx is called the dynamic
type set ofx. The set of base classes of these types is called the dynamic class set
of x.

20.14 RULES ON ASSIGNMENT ATTEMPT

Assignment Attempt rule

An Assignment_attempt is valid if and only if the type of the target entity is a reference
type.

The effect of an Assignment_attempt of sourcey and targetx, of typeTX, is the following:

1 • If y is attached to an object whose type conforms toTX, then the effect is that of a
direct reattachment ofy to x, as given earlier in this chapter.

2 • If y is void or attached to an object whose type does not conform toTX, the effect
is to make the value ofx void.

20.17 SEMANTICS OF EQUALITY

There are in fact two operators to consider here: equality = and inequality/= . However
only one semantic definition is needed, since the effect ofx /= y is defined in all cases to
be that of

not (x = y)

Assignment_attempt Writable "?=" Expression

TYPE OF FIRST→ Reference Expanded

TYPE OF SECOND↓

Reference [1] Reference equality [3] standard_equal

Expanded [2] standard_equal [4] standard_equal

=
∆

VJRV

§20.468

20 Reattaching entities

20.4 SYNTAX AND VALIDITY OF DIRECT REATTACHMENT

Assignment rule

An Assignment is valid if and only if its source expression conforms to its target entity.

20.5 SEMANTICS OF DIRECT REATTACHMENT

For the exception raised in case 2 if the value ofy is void, the Kernel Library class
EXCEPTIONS introduces the integer codeVoid_assigned_to_expanded.

20.9 POLYMORPHISM

Definition: dynamic type

The dynamic type of an entity or expressionx, at some instant of execution whenx
is not void, is the type of the object to whichx is attached. This should not be
confused with the “type” ofx (called itsstatic type if there is any ambiguity), which
for an entity is the type with which it is declared, and for an expression is the type
deduced from the types of its constituents.

Definition: polymorphism

The ability to have more than one dynamic type is called polymorphism; an entity
or expression which has two or more possible dynamic types (that is to say, which
may become attached at run time to objects of two or more types) is itself a
polymorphic entity. Only entities or expressions of reference types may be
polymorphic.

Assignment Writable ":=" Expression

SOURCE TYPE→ Reference Expanded

TARGET TYPE↓

Reference [1] Reference reattachment[3] Clone

Expanded [2] Copy (will fail if source
is void)

[4] Copy

=
∆

VJAR

§19.8 DEEP EQUALITY 67

3 • .If TY does not conform toTX, the result is false. Cases 4 to 6 assume thatTY
conforms toTX.

4 • If TX is BOOLEAN, CHARACTER, INTEGER, REAL, DOUBLE or POINTER, the
result is true if and only if OX and OY are the same value, after possible conversion
to the heavier type if OX and OY are different arithmetic types.

5 • If OX and OY are special objects (strings or arrays), that is to say, sequences of
values, the result is true if and only if the sequences have the same length, and every
field in one is (recursively) equal to the field at the same position in the other.

6 • Otherwise OX and OY are standard complex objects, and conformance ofTY to TX
implies that for every field of OX there is a corresponding field in OY. Then the
result is true if and only if every reference field of OX is attached to the same object
as the corresponding field in OY, and every object field of OX, coming from an
expanded attribute inTX's base class, is (recursively) equal to the corresponding
field in OY.

19.8 DEEP EQUALITY

Two referencesx andy are deep-equal if and only if they are either both void or attached
to deep-equal objects.

Two objects OX and OY are deep-equal and only if they satisfy the following four
conditions:

1 • OX and OY have the same exact type.

2 • The objects obtained by setting all the reference fields of OX and OY (if any) to
void references are equal.

3 • For every void reference field of OX, the corresponding field of OY is void.

4 • For every non-void reference field of OX, attached to an object PX, the
corresponding field of OY is attached to an object PY, and it is possible (recursively)
to show, under the assumption that OX is deep-equal to OY, that PX is deep-equal
to PY.

§19.266

19 Duplicating and comparing objects

19.2 COPYING AN OBJECT

Assumecopy has not been redefined and consider a callx● copy (y). As with any call, the
targetx must be non-void; the first precondition clause ofcopy states thaty must also be
non-void. Let OX and OY be the attached objects at the time of the call.

1 • If OX and OY are bit sequences, the conformance rule on Bit_type requires OX to
be at least as long as OY. The call then copies onto OX the contents of OY, extended
with zeros on the left if OY is shorter than OX. Cases 2 to 4 assume that OX and OY
are not bit sequences.

2 • If the types of OX and OY are basic types (BOOLEAN, CHARACTER, INTEGER,
REAL, DOUBLE or POINTER), then OX is identical to OY or is a heavier type.
Then the call copies the value of OY onto OX, after conversion to the heavier type
if necessary.

3 • If OX and OY are special objects, that is to say sequences of values (strings or
arrays), the call copies the value of OY onto OX. The implementation must ensure
that whenever this occurs the size of OX is at least as large as the size of OY.

4 • In the remaining cases OX and OY are standard objects, made of zero or more
fields, and the second precondition clause implies that the type of OY is a
descendant of the type of OX; as a result, for every field of OX there is a
corresponding field in OY. Then the call copies onto every field of OX the
corresponding field of OY.

19.3 CLONING AN OBJECT

Here is the definition of the semantics of a callclone (y):

1 • If the value ofy is void, the call returns a void value.

2 • If the value ofy is attached to an object OY, the call returns a newly created object
of the same type as OY, initialized by applyingcopy to that object with OY as
source.

19.7 OBJECT EQUALITY

Here is the precise result that the standard version ofequal must return when applied to
two valuesx andy.

1 • If any one ofx andy is void, the result is true if the other is also void too, and false
otherwise. Cases 2 to 6 assume that both arguments are attached to respective
objects OX and OY of typesTX andTY.

2 • If OX and OY are bit sequences, the result is true if and only if the two sequences,
with the shorter one being extended with zeros on the left to match the length of the
longer one if necessary, are bit-by-bit identical. Cases 3 to 6 assume that OX and OY
are not bit sequences.

§18.13 DEFAULT INITIALIZATION VALUES 65

• For BOOLEAN: the boolean value false.

• For CHARACTER: the null character.

• For INTEGER, REAL or DOUBLE: the integer, single precision or double precision
zero.

• For POINTER: a null pointer.

• For a Bit_type of the formBIT N: a sequence of N zeros.

§18.1064

2 • C is an effective class.

3 • If the Type part is present, the type that it contains (which isT) conforms to the type
of x, and is a reference type.

4 • If C does not have a Creators part, there is no Creation_call part.

5 • If C has a Creators part, there is a Creation_call part, and the call would be
argument-valid if it appeared in the text ofC.

6 • If case 5 holds andf is the feature of the Creation_call, thenf is available for
creation toX.

18.10 CREATION VALIDITY (SYSTEM-LEVEL)

A Creation instruction issystem-valid if and only if it satisfies one of the following two
conditions:

1 • The creation type is explicit (in other words, the instruction begins with ! T ! ... for
some typeT).

2 • The creation type is implicit (in other words, the instruction begins with !!...) and
every possible dynamic typeT for x, with base classC, satisfies conditions 1 to 6 of
the Creation Instructionrule (page \n(9g).rule. In applying conditions 5 and 6, the
feature of the call,f, must be replaced by its version inC.

A Creation instruction is valid if and only if it is both class-valid and system-valid.

18.11 CREATION SEMANTICS

With the above validity rules, we can define the precise semantics of a Creation
instruction. Consider such an instruction with targetx and creation typeT. If T is a
reference type, the effect of executing the instruction is the following sequence of steps:

1 • If there is not enough memory available to create a new direct instance ofT, trigger
an exception in the routine that executed the instruction. Steps 2 to 5 do not apply in
this case.

2 • Create a new direct instance ofTC.

3 • Assign a value to every field of the new instance: for a field corresponding to a
constant attribute, the value defined in the class text; for a field corresponding to a
variable attribute, the default value of the attribute’s type, according to the rules
given below.

4 • If the Creation instruction includes a Creation_call, that is to say an Unqualified_
call, execute that call on the resulting object.

5 • Attachx to the object.

18.13 DEFAULT INITIALIZATION VALUES

Consider a field of a newly created object, corresponding to an attribute of typeFT in the
base class of the object’s type. The default initialization valueinit for the field is
determined as follows according to the nature ofFT.

• For a reference type: a void reference.

VGCS

VGCI

§18.8 CREATION SYNTAX 63

18 Creating objects

18.8 CREATION SYNTAX

Creation_clause rule

A Creation_clause appearing in the Creators part of a classC is valid if and only if it
satisfies the following five conditions, the last four for every Feature_identifierfname in
the clause’s Feature_list:

1 • C is effective.

2 • fname appears only once in the Feature_list.

3 • fname is the final name of a procedure ofC; let cp be that procedure.

4 • cp is not a once routine.

5 • If C is expanded,cp has no arguments, and no other Feature_identifier appears in
the Feature_list.

Definition: creation procedure

Definition: creation Type

To discuss the validity and semantics of the Creation instruction it is useful to
introduce the notion of creation type of a Creation instruction. The creation type is
the optional Type appearing in the instruction (between exclamation marks) if
present; otherwise it is the base type of the target.

18.9 CREATION VALIDITY (CLASS-LEVEL)

Creation Instruction rule

Consider a Creation instruction appearing in a classX. Let x be the target of the
instruction,T its creation type, andC the base class ofT.

The instruction isclass-valid if and only if it satisfies the following conditions:

1 • T is not a Formal_generic_name (that is to say, a formal parameter of the class
where the instruction appears).

Creators creation {Creation_clausecreation ...}+

Creation_clause [Clients] [Header_comment]

Feature_list

Creation "!" [Type] "!" Writable [Creation_call]

Creation_call "●" Unqualified_call

=
∆

=
∆

VGCP

=
∆

=
∆

VGCC

§17.962

4 • Current, the predefined entity used to represent a reference to the current object (the
target of the latest not yet completed routine call).

Entity rule

An occurrence of an entitye in the text of a classC (other than as feature of a qualified
call) is valid if and only if it satisfies one of the following conditions:

1 • e is the final name of an attribute ofC.

2A • The occurrence is in a Local_declarations, Routine_body, Postcondition or Rescue
part of a Routine text for a function, ande is the Local entityResult.

2B • The occurrence is in a Local_declarations, Routine_body or Rescue part of a
Routine text for a routiner, and the Local_declarations part forr contains an Entity_
declaration_list includinge as part of its Identifier_list.

3 • The occurrence is in a Feature_declaration for a routiner, and the Formal_
arguments part forr contains an Entity_declaration_list includinge as part of its
Identifier_list.

4 • e is Current.

Unique unique=
∆

VEEN

§17.7 FIELDS OF COMPLEX OBJECTS 61

• For BIT n, with n ≥ 0: all the sequences ofn binary (zero or one) values (none ifn
= 0).

17.7 FIELDS OF COMPLEX OBJECTS

Definition: complex class, complex type, field

Every class other thanBOOLEAN, CHARACTER, INTEGER, REAL, DOUBLE and
POINTER is said to be a complex class. Any type whose base class is complex is
itself a complex type, and its instances are complex objects.

Consider a class typeTC, of base classC, and an attributea of classC, with TA
being the type ofa. The possible values for the field corresponding to attributea in
a direct instance ofTC depend on the nature ofTA. There are three possible cases
for TA:

1 • Reference type. (This also covers the case of an anchored type, of the formlike x,
which has a class type as base type.)

2 • Expanded type.

3 • Formal generic parameter of classC.

In case 1, the field corresponding to attributea is a reference. That reference may
be void, or it may be attached to an instance ofTA’s base type — not necessarily a
direct instance.

Definition: sub-object

In case 2, the field corresponding to attributea is an instance of the expanded type
TA. In other words, the field is itself an object, called a sub-object of the enclosing
object. Depending on the precise nature ofTA, the sub-object may be of various
forms:

• TA may be a basic type, in which case the sub-object is a basic object of the
corresponding type; the figure shows fields of typeINTEGER, DOUBLE and Bit_
type.

Definition: composite object

• If TA is a non-basic expanded type, the sub-object is itself a complex object. In this
case the enclosing complex object is said to be composite.

17.9 EXPRESSIONS AND ENTITIES

Definition: entity

In a class text, four kinds of entity may appear:

1 • Final names of attributes of the class.

2 • Local entities of routines, including the predefined entityResult for functions.

3 • Formal routine arguments.

§17.260

17 Objects, values and entities

17.2 OBJECTS

Definition: standard object, special object

There are two kinds of object, standard and special:

• A standard object is the direct result of a Creation instruction or clone operation
executed by the system.

• A special object is a sequence of values, all compatible with a given type. It may be
a string or anarray. In a string, the values are all characters; in an array, they are
either all references, or all direct instances of a single type.

17.4 INSTANCES OF A CLASS

Definition: instance of a class

An instance of a classC is an instance of any typeT based onC, and similarly for
direct instances.

17.5 INSTANCES AND DIRECT INSTANCES OF A TYPE

Definition: instances of a type

The instances of a typeTX are the direct instances of any type conforming toTX.

Definition: diir ect dir ect instances of non-basic expanded types

Let TX be an expanded type which is neither one of the basic types (BOOLEAN,
CHARACTER, INTEGER, REAL, DOUBLE, POINTER) nor a Bit_type. The direct
instances ofTX are the the direct instances of the base type ofTX.

17.6 DIRECT INSTANCES OF BASIC TYPES

Direct instances of basic types

The direct instances of the basic types are the following.

• For BOOLEAN: the boolean values true and false.

• For CHARACTER: any character.

• For INTEGER: all the integer values which may be represented onInteger_bits bits.

• For REAL: all floating-point values which may be represented onReal_bits bits.

• For DOUBLE: all the floating-point values which may be represented onDouble_
bits bits.

• For POINTER: all possible feature addresses, for transmission to non-Eiffel
routines.

§16.5 CONSTANT ATTRIBUTES WITH MANIFEST VALUES 59

16 Attributes

16.5 CONSTANT ATTRIBUTES WITH MANIFEST VALUES

A declaration of a featuref introducing a manifest constant is valid if and only if the
Manifest_constantm used in the declaration matches the typeT declared forf in one of
the following ways:

• m is a Boolean_constant andT is BOOLEAN.

• m is a Character_constant andT is CHARACTER.

• m is an Integer_constant andT is INTEGER.

• m is a Real_constant andT is REAL or DOUBLE.

• m is a Manifest_string andT is STRING.

• m is a Bit_constant consisting of exactly M bits for some positive integer M, andT
is BIT M for the same M.

16.6 UNIQUE ATTRIBUTES

A declaration of a featuref introducing a Unique constant is valid if and only if the type
T declared forf is INTEGER.

Unique Declaration rule

The value of an attribute declared as unique is a positive integer. If two unique attributes
are introduced in the same class, their values are different. Furthermore, unique attributes
declared as part of the same Feature_declaration are guaranteed to have consecutive
values, in the order given.

Unique unique

VQMC

=
∆

VQUI

§15.958

A Retry instruction is valid if and only if it appears in a Rescue clause.

15.9 SEMANTICS OF EXCEPTION HANDLING

Definition: rescue block

Any Internal routiner of a classC has arescue blockrb, which is a Compound defined
as follows:

1 • If r has a Rescue clause,rb is the Compound contained in that clause.

2 • If r has no Rescue clause,rb is a Compound made of a single instruction: a call to
the version ofdefault_rescue in C.

An exception triggered during an execution of a routiner leads, if it is neither ignored nor
continued, to the following sequence of events.

1 • Some or all of the remaining instructions are not executed.

2 • The rescue block of the routine is executed.

3 • If the rescue block executes a Retry, the body of the routine is executed again. This
terminates processing of the current exception. Any new triggering of an exception
is a new occurrence, which will (recursively) be handled according to the present
semantics.

4 • If the rescue block is executed to the end without executing a Retry, this terminates
the processing of the current exception and the current execution ofr, causing a
failure of that execution. If there is a calling routine, this failure triggers an
exception in the calling routine, which will be handled (recursively) according to the
same semantics. If there is no calling routine,r is the root’s creation procedure; its
execution will terminate.

The definition mentions that it applies only toa routinean exceptionwhich is
neither ignored nor continued. This corresponds to two facilities provided through
features of the Kernel Library classEXCEPTIONS, implementing the false alarm
response:

• You may specify that a certain typeof exception must be altogether ignored.

• You may specify that a certain type of exception must cause execution of a
designated procedure and then continuation.

15.10 EXCEPTION CORRECTNESS

Definition: exception- correct

A routiner of a classC is exception-correctif and only if, for every branchb of its
rescue block:

1 • If b ends with a Retry: {true} b { INVC ∧ prer}

2 • If b does not end with a Retry: {true} b { INVC}

In this rule,INVC is the invariant of classC andprer is the precondition ofr.

VXRT

§15.2 WHAT IS AN EXCEPTION? 57

15 Exceptions

15.2 WHAT IS AN EXCEPTION?

Definitions: failure, exception

Under certain circumstances, the execution of a construct (such as an instruction)
may be unable to terminate as you normally expect it to. The execution is then said
to result in a failure.

If a routine executes a component and that component fails, this will prevent the
routine’s execution from proceeding as planned; such an event is called an
exception.

15.3 EXCEPTION HANDLING POLICY

Only three possibilities make sense for handling an exception:

• A favorable albeit unlikely case is one in which the exception was in fact not
justified. This is called thefalse alarm.

• When writing the component, you may have anticipated the possibility of an
exception, and provided for an alternative way to fulfil the contract. Then the
execution will try that alternative. This case is calledresumption.

• If you have no way of fulfilling the contract, then you should try to return the objects
involved into an acceptable state, and signal your failure to the client. This is called
organized panic.

Definition: recipient

Any execution of a software component is part of the execution of a call to a certain
routine, known as thecurrent routine. If the component’s execution fails, this will
trigger an exception in the current routine, which becomes the recipient of the
exception. Depending on how the software has been written, the exception will be
handled through one of the three techniques listed above.

15.8 SYNTAX AND VALIDITY OF THE EXCEPTION
CONSTRUCTS

It is valid for a Routine to include a Rescue clause if and only if its Routine_body is of
the Internal form.

Rescue rescue Compound

Retry retry

=
∆

=
∆

VXRC

§14.856

computation unchanged if the Boolean_expression of its Exit clause evaluates to false;
otherwise, it is the effect of executing the Compound clause, followed (recursively) by
the effect of executing the Loop_body again in the resulting state.

14.8 THE DEBUG INSTRUCTION

The effect of a Debug instruction depends on the mode that has been chosen for the
enclosing class:

• If the debug option is on generally, or if the instruction includes a Debug_key_list
and the option is on for at least one Debug_key in the list, the effect of the Debug
instruction is the same as that of its Compound.

• Otherwise the effect is that of a Null instruction.

Debug debug [Debug_keys] Compoundend

Debug_keys "(" Debug_key_list ")"

Debug_key_list {Debug_key "," ...}

Debug_key Manifest_string

=
∆

=
∆

=
∆

=
∆

§14.7 LOOP 55

Definition: unfolded form of a multi_branch Multi_branch

To discuss the constraints and the semantics, it is convenient to consider the
unfolded form of a Multi_branch. To obtain it, just replace any integer or character
Interval, in the Choices of a When_part, by a Choices list made up of all constants
between the interval’s bounds, or empty if the second bound is smaller than the first.
Integer order is used for an Integer_interval, and character code order for a
Character_interval.

Multi_branch rule

A Multi_branch instruction is valid if and only if its unfolded form satisfies the following
conditions.

1 • The inspect expression is of typeINTEGER or CHARACTER.

2 • Any inspect constant (any value in one of the Choices parts) is a Constant of the
same type as the inspect expression.

3 • Any two non-Unique inspect constants have different values.

4 • Any two Unique inspect constants have different names.

5 • If any inspect constant is Unique, then every other inspect constant in the
instruction is either Unique or has a negative or zero value.

6 • All Unique inspect constants, if any, have the same class of origin (the enclosing
class or a proper ancestor).

The effect of executing a Multi_branch instruction is defined as the effect of executing its
unfolded form, as follows. The value of the inspect expression is computed. Because of
the above validity constraint, that value may be equal to at most one of the inspect
constants. If there is indeed one such constant, the effect of the Multi_branch is that of
the Compound appearing after thethen in the When_part of the matching inspect
constant. If there is no such constant:

1 • If the Else_part is present, the effect of the Compound is that of the Compound
appearing in the Else_part.

2 • Otherwise an exception is triggered and the current routine execution fails.

14.7 LOOP

The effect of a Loop is the effect of executing its Initialization followed by the effect of
executing its Loop_body. The effect of executing an Initialization clause is the effect of
executing its Compound. The effect of executing a Loop_body is to leave the state of the

Character_interval Character_constant "●" ● ●" Character_
constant

Initialization from Compound

Loop_body Exit loop Compound

Exit until Boolean_expression

=
∆

VOMB

=
∆

=
∆

=
∆

§14.554

Definition: prevail immediately

If the value of condition1 is true when the instruction is executed, then the
Conditional is said to prevail immediately.

Finally, we may consider that every Conditional has an Else_part if we understand
an empty Else_part to stand for one with an empty Compound.

With these conventions, the effect of a Conditional may be defined as follows. If the
Conditional prevails immediately, then its effect is that of its compound1 part, as defined
above. Otherwise:

• If it has a secondary part, the effect of the entire Conditional is (recursively) the
effect of the secondary part.

• If it has no secondary part, its effect is that of the (possibly empty) Compound in its
Else part.

14.5 MULTI-BRANCH CHOICE

Definition: inspect expression

A Multi_branch instruction contains a Expression, called the inspect expression,
appearing after the keywordinspect. The inspect expression,last_input in the
example, may only be of typeINTEGER or, as here,CHARACTER. It includes one
or more When_part, each of which indicates a list of one or more Choice, separated
by commas, and a Compound to be executed when the value of the Expression is
one of the given Choice values.

Definition: inspect constant

Every Choice specifies one or more values, called inspect constants. More
precisely, a Choice is either a single constant (Manifest_constant or constant
attribute) or an interval of consecutive constants yielding all the interval’s elements
as inspect constants. If present, the instruction’s optional Else_part is executed
when the inspect expression is not equal to any of the inspect constants.

Multi_branch inspect Expression

[When_part_list] [Else_part]end

When_part_list when {When_partwhen ...}+

When_part Choicesthen Compound

Choices {Choice "," ...}

Choice Constant | Interval

Interval Integer_interval | Character_interval

Integer_interval Integer_constant "● ●" Integer_constant

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§14.2 COMPOUND 53

14 Control structures

14.2 COMPOUND

The effect of executing a Compound may be defined as follows.

• If the Compound has zero instructions, the effect is to leave the state of the
computation unchanged.

• If the Compound has one or more instructions, its effect is that of executing the first
instruction of the Compound and then (recursively) to execute the Compound
obtained by removing the first instruction.

14.3 NULL INSTRUCTION

Specimens of the null instruction are empty.

The effect of the null instruction is to leave the state of the computation unchanged.

14.4 CONDITIONAL

To define precisely the semantics of this construct, a few auxiliary notions are
useful. As the syntactical specification shows, a Conditional begins with

if condition1 then compound1

wherecondition1 is a boolean expression andcompound1 is a Compound.

Definition: secondary part

The remaining part may optionally begin withelseif. If so, replacing the firstelseif by
if would transform the remaining part into a new, syntactically correct, Conditional;
such an instruction is called the secondary part of the enclosing Conditional.

The final part, also optional, is of the formelse compoundn.

Compound {Instruction ";" ...}

Conditional if Then_part_list [Else_part]end

Then_part_list {Then_partelseif ...}+

Then_part Boolean_expressionthen Compound

Else_part else Compound

=
∆

=
∆

=
∆

=
∆

=
∆

§13.1152

13.11 BIT TYPES

The possible direct conformance cases involving a Bit_type are the following for any
positive integersN andP:

1 • BIT N conforms directly toANY.

2 • BIT N conforms directly toBIT P for N ≤ P.

Other than implied by these rules, no type conforms directly to a Bit_type, and a Bit_type
conforms directly to no type.

VNCB

§13.7 FORMAL GENERIC PARAMETERS 51

13.7 FORMAL GENERIC PARAMETERS

Let G be a formal generic parameter of a class, which in the class may be used as a type
of the Formal_generic_name category. No type conforms directly toG. If G is not
constrained, it conforms directly to the typeANY (based on the corresponding universal
class) and to no other type. IfG is constrained byCT, G conforms directly toCT and to
no other type.

13.8 ANCHORED TYPES

In a classC, type like Current conforms directly to its base typeCT, whereCT is C
followed by its Formal_generic_list, if any, with any Constraint removed.

Type like anchor, whereanchor is a feature ofC or a formal argument of a routine
of C, conforms directly to the type ofanchor in C.

An anchored type conforms directly to no type other than implied by these rules.
No type conforms directly to an anchored type.

13.9 EXPRESSION CONFORMANCE

An expressionv of typeVT conforms to an expressiont of typeTT if and only if they
satisfy any one of the following four conditions.

1 • VT conforms toTT.

2 • TT is like v (v in this case must be an entity).

3 • VT andTT are both of the formlike x for the samex.

4 • TT is like x wherex is a formal argument to a routiner, v is an actual argument in a
call to r, andVT conforms to the type of the actual argument corresponding tox in
the call.

5 • v is a call to some functionf of type like x wherex is a formal argument off, and
the type of the actual argument corresponding tox in the call conforms toTT.

13.10 EXPANDED TYPES

Definition: heavier arithmetic type

Any arithmetic type conforms to heavier ones, whereDOUBLE is heavier than
REAL andINTEGER, andREAL is heavier thanINTEGER.

Let T be an expanded type other than a Bit_type. A typeU conforms directly toT if and
only if they satisfy any one of the following three conditions:

1 • T is of the formexpanded BT, andU is BT.

2 • T is REAL andU is INTEGER.

3 • T is DOUBLE andU is REAL or INTEGER.

In case 1T also conforms directly toU.

An expanded type conforms directly to no type other than implied by this rule and
the rules of 13.5 and 13.6.

VNCF

VNCH

VNCX

VNCE

§13.350

13 Conformance

13.3 SIGNATURE CONFORMANCE

A signaturet = (<B1, ...,Bn>, <S>) conforms to a signatures = (<A1, ...,An>, <R>) if and
only if it satisfies the following conditions:

1 • Each of the two sequence components oft has the same number of elements as the
corresponding component ofs.

2 • Every typeTi in each of the two sequence components oft conforms to the
corresponding typeSi in the corresponding component ofs.

13.4 DIRECT AND INDIRECT CONFORMANCE

Let T andV be two types.V conforms toT if and only if one of the following holds:

1 • V andT are identical.

2 • V conforms directly toT.

3 • V is NONE andT is a reference type.

4 • V is B [Y1,... Yn] for some generic classB, T is B [X1,... Xn], and every one of the Yi
conforms (recursively) to the corresponding Xi.

5 • T is a reference type and, for some typeU, V conforms toU and U conforms
(recursively) toT.

13.5 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE

Let CT be a Class_type of base classC, andBT be a reference type whose base classB is
not generic.CT conforms directly toBT if and only if the Inheritance clause ofC listsB
in one or more of its Parent items.

13.6 GENERICALLY DERIVED REFERENCE TYPES

Let BT be a generically derived reference type of base typeB [X1,... Xn] for some n >= 1,
where the formal generic parameters ofB areG1,... Gn. Let CT be a Class_type of base
class C different from B. To determine whether CT conforms directly to BT, define the
substitutionσas follows:

• If CT is non-generic,σ is the identity substitution.

• If CT is a a generically derived type, of the formC [Y1,... Ym], and classC is
declared with formal generic parameters H1,... Hm, thenσ applied to any of theHi
(for 1 ≤ i ≤ m) is Yi, andσ applied to any other element is the element itself.

Then CT conforms directly toBT if and only if the Inheritance clause ofC lists
B [Z1,... Zn] as one of its Parent items and, for everyj such that1 ≤ j ≤ 1 ≤ j ≤ n,
applying substitutionσ to Zj yieldsXj.

VNCS

VNCC

VNCN

VNCG

§12.15 ANCHORED TYPES 49

The base typeBT of an anchored typelike anchor appearing in a classC is determined
as follows:

Definition: base class, base type (anchored)

1 • If anchor is the final name of some feature ofC, thenBT is the declared type of that
feature inC.

2 • If anchor is a formal routine argument, thenBT is the type declared for that
argument in the Formal_arguments list.

3 • If anchor is Current, thenBT is C followed by its Formal_generics, if any, with any
Constraint removed.

§12.1248

12.12 RULES ON EXPANDED TYPES

Definition: expanded type, reference type

A typeT is expanded if and only if one of the following conditions holds:

1 • T is a Class_type whose base classC is an expanded class.

2 • T is of the formexpanded CT. (As noted, it is redundant but not erroneous for the
base class ofCT to be an expanded class.)

3 • T is of the formBIT M for some non-negative integer M.

T is a reference type if it is not a Formal_generic_name and none of the above
condition applies.

Expanded Type rule

It is valid to use an expanded type of base classC in the text of a classB if and only if it
satisfies the following two conditions:

1 • C is not a deferred class.

2 • C either has no Creators part, or has a Creators part containing exactly one creation
procedure, with no argument, available toB for creation.

Any entity declared of an expanded type has run-time values which are instances of the
corresponding base type.

12.14 BIT TYPES

A Bit_type declaration is valid if and only if its Constant is of typeINTEGER, and has a
positive value.

The possible values of an entity declared asBIT N for someN are bit sequences of exactly
N bits.

12.15 ANCHORED TYPES

Definition: anchored type, anchor

An Anchored type is of the form

like anchor

whereanchor is called the anchor of the type.

An anchored type of the formlike anchor appearing in a classC is valid if and only if
one of the following holds:

1 • anchor is the final name of an attribute or function ofC, whose declared type is a
non-Anchored reference type.

2 • The type appears in the text of a routiner of C, andanchor is a formal argument of
r, whose declared type is a non-Anchored reference type.

3 • anchor is the reserved wordCurrent.

VTEC

VTBT

VTAT

§12.8 CONSTRAINED GENERICITY 47

Definition: generic class, generic derivation, non-generic

Any class declared with a non-empty Formal_generics part (constrained or not) is
said to be a generic class. A generic class does not describe a type but a template
for a set of possible types. To derive an actual type from this template, you must
provide an Actual_generics list, whose elements are themselves types. The result is
called a generic derivation.

Unconstrained Genericity rule

Let CT be a Class_type having a non-empty Actual_generics part, whose base classC is
not a constrained generic class.CT is valid if and only ifC satisfies the following two
conditions:

1 • C is a generic class.

2 • The number of Type components inCT’s Actual_generics list is the same as the
number of Formal_generic parameters in the Formal_generic_list ofC’s declaration.

A generically derived type is expanded if its base class is an expanded class; otherwise it
is a reference type.

12.8 CONSTRAINED GENERICITY

The effect of a Constraint, if present, is to restrict allowable actual generic parameters to
types that conform to the Class_type given.

Constrained Genericity rule

Let C be a constrained generic class. A Class_typeCT havingC as base class is valid if
and only ifCT satisfies the two conditions of the Unconstrained Genericity rule (VTUG,
page \n(Qt)VTUG) and, in addition:

3 • For any Formal_generic parameter in the declaration ofC having a constraint of the
form –>D, the corresponding Type in the Actual_generics list ofCT conforms toD.

12.9 USING FORMAL GENERIC PARAMETERS AS TYPES

Definition: base class, base type (constrained generic)

We consider the base type of a constrained generic parameter to be its constraining
type, with the associated base class.

Definition: base class, base type (unconstrained generic)

ANY serves as both the base type and the base class of any unconstrained Formal_
generic_name.

12.11 CLASS TYPES EXPANDED

If T is a valid Class_type, generically derived or not,expanded T is a valid Class_type_
expanded, and the possible values for entities of that type are instances ofT.

VTUG

VTCG

§12.446

12 Types

12.4 HOW TO DECLARE A TYPE

12.5 BASE CLASS, BASE TYPE

Class Type rule

An IdentifierCC is valid as the Class_name part of a Class_type if and only if it is the
name of a class in the surrounding universe.

12.7 UNCONSTRAINED GENERICITY

Definition: base class, base type (class Type)

The base class of a generically derived type is the class used to derive it by
providing actual generic parameters.

Definition: constrained, unconstrained generic

The syntax for Class_declaration includes an optional Constraint part after every
formal generic parameter. If present, this part makes the parameter constrained; if
not, the parameter is unconstrained. A generic class is constrained if it has at least
one constrained parameter, unconstrained otherwise.

Type Class_type |

Class_type_expanded |

Formal_generic_name |

Anchored |

Bit_type

Class_type Class_name [Actual_generics]

Actual_generics "[" Type_list "]"

Type_list {Type "," ...}

Class_type_expanded expanded Class_type

Bit_type BIT Constant

Anchored like Anchor

Anchor Identifier |Current

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

VTCT

§11.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT 45

2 • If the Repeated Inheritance rule implies thatf will be replicated inD and f is
potentially ambiguous, then the Select subclause of exactly one of the Parent parts
of D lists the corresponding version off, under its finalD name.

Select Subclause rule

A Select subclause appearing in the Parent part for a classB in a classD is valid if and
only if, for every Feature_namefname in its Feature_list,fname is the final name inD of
a feature that has two or more potential versions inD, andfname appears only once in the
Feature_list.

VMSS

§11.1244

3 • If a class inherits two features as effective from different parents and they have the
same name, the class must also (except under sharing for repeated inheritance)
remove the name clash through renaming.

11.12 VERSIONS OF A FEATURE

Definition: potential version

Let f be a feature of a classA andD a descendant ofA. A potential version off in D
is any inherited feature ofD which is either:

• f itself.

• A feature resulting (recursively) from a redeclaration of a potential version off.

• (Recursively) a potential version of a feature of whichf is a redeclaration.

• A feature resulting (recursively) from a generic derivation ofA.

Definition: version

Let f be a feature of a classA andD a descendant ofA. The version off in D is the
featuredf defined as follows:

1 • If D has only one potential version off, thendf is that feature.

2 • If D has two or more potential versions off, the Repeated Inheritance Consistency
constraint, seen below, states that exactly one of them must appear, under its finalD
name, as part of a Select clause inD; thendf is that feature.

Definition: potentially ambiguous

Let D be a repeated descendant of a classA. A feature f of A is potentially
ambiguous inD if and only if one of the following two conditions holds:

1 • f is an attribute.

2 • D has two or more potential versions off.

11.13 THE REPEATED INHERITANCE CONSISTENCY
CONSTRAINT

It is valid for a classD to be a repeated descendant of a classA if and only if D
satisfies the following two conditions for every featuref of A:

1 • If the Repeated Inheritance rule implies thatf will be shared inD, then all the
inherited versions off are the same feature.

Select select Feature_list=
∆

VMRC

§11.10 NAME CLASHES 43

11.10 NAME CLASHES

Definition: name clash

A name clash occurs for a certain feature namefname in a classC if, for two different
parentsA andB of C, bothA andB have a feature of namefname.

11.11 THE INHERITED FEATURES OF A CLASS

Definition: inherited features

Let D be a class. The listinherited of inherited features ofD is obtained as follows. Let
precursors be the list obtained by concatenating the lists of features of every parent ofD;
this list may contain duplicates in the case of repeated inheritance. Theninherited is
obtained fromprecursors as follows:

1 • In list precursors, for any set of two or more elements representing features that are
repeatedly inherited inD under the same name, so that the Repeated Inheritance rule
yields sharing, keep only one of these elements. The Repeated Inheritance
Consistency constraint (sharing case) indicates that these elements must all
represent the same feature, so that it does not matter which one is kept.

2 • For every featuref in the resulting list, ifD undefinesf, replacef by a deferred
feature with the same signature and specification.

3 • In the resulting list, for any set of deferred features with the same final name inD,
keep only one of these features, with assertions joined as per the Join Semantics rule.
(Keep the signature, which the Join rule requires to be the same for all the features
involved.)

4 • In the resulting list, remove any deferred feature such that there is an effective
feature with the same final name in the list. (This is the case in which a featuref
inherited as effective effects one or more deferred features: of the whole group, only
f remains.)

5 • Let merged_features be the resulting list. All its elements have different feature
names; they are the inherited features ofD in their parent form. From this list,
produce a new one as follows: for any feature whichD redeclares (by redefinition
or effecting), replace the feature by the result of the redeclaration; keep any other
feature as it is inmerged_features.

6 • The result is the listinherited of inherited features ofD.

Feature Name rule

It is valid for a classC to introduce a feature with the Feature_namefname, or to inherit
a feature under the final namefname, if and only if no other feature ofC has that same
name.

1 • A class may not introduce two different features, both deferred or both effective,
with the same name.

2 • If a class introduces a feature with the same name as a feature it inherits in effective
form, it must rename the inherited version.

VMFN

§11.242

11 Repeated inheritance

11.2 CASES OF REPEATED INHERITANCE

Definition: repeated inheritance, ancestor, descendant

Repeated inheritance occurs whenever (as a result of multiple inheritance) two or
more of the ancestors of a classD have a common parentA. D is then called a
repeated descendant ofA, andA a repeated ancestor ofD.

Definition: direct repeated inheritance

The simplest case, called direct repeated inheritance, corresponds to the following
scheme (whereD is a “repeated heir” ofA):

class D inherit

A rename ... redefine ... end;

A rename ... redefine ... end

... Rest of class omitted ...

Definition: indirect repeated inheritance

The second case, indirect repeated inheritance, arises when one parent ofD is a
proper descendant ofA, and one or more other parents are descendants ofA. (Some
of the paths may be direct.)

11.3 SHARING AND REPLICATION

Repeated Inheritance rule

Let D be a class andB1, ... Bn (n ≥ 2) be parents ofD having a common ancestorA. Let
f1, ... fn be features of these respective parents, all having as their seed the same featuref
of A. Then:

1 • Any subset of these features inherited byD under the same final name yields a
single feature ofD.

2 • Any two of these features inherited under a different name yield two features ofD.

Definition: shared, replicated

Features will be said to be shared if case 1 of the Repeated Inheritance rule applies,
and replicated if case 2 applies.

§10.23 RULES ON JOINING FEATURES 41

Join Semantics rule

Joining deferred features with the same final name yields a non-obsolete deferred feature
defined as follows:

1 • Its name is the final name of all its precursors.

2 • Its signature is the precursors’ signature, which the Join rule indicates must be the
same for all precursors after possible redeclaration.

3 • Its precondition is theor of all the precursors’ preconditions.

4 • Its postcondition is theand of all the precursors’ postconditions.

5 • Its Header_comment is the concatenation of those of all precursors.

6 • It is not obsolete (even if some of the precursors are obsolete).

§10.2340

Redeclaration rule

Let C be a class andg a feature ofC. It is valid forg to be a redeclaration of a featuref
inherited from a parentB of C if and only if the following conditions are satisfied.

1 • No effective feature ofC other thanf andg has the same final name.

2 • The signature ofg conforms to the signature off.

3 • If g is a routine, its Precondition, if any, begins withrequire else (not justrequire),
and its Postcondition, if any, begins withensure then (not justensure).

4 • If the redeclaration is a redefinition (rather than an effecting) the Redefine subclause
of the Parent part forB lists the final name off in its Feature_list.

5 • If f is inherited as effective, theng is also effective.

6 • If f is an attribute,g is an attribute,f andg are both variable, and their types are
either both expanded or both non-expanded.

7 • If either one off andg is an External routine, so is the other.

Definition: declared type

Any feature or entity of a classC has adeclared typedt as follows:

• For a feature which is immediate inC or redeclared inC, dt is the type given by the
declaration or redeclaration.

• For an inherited feature which is not redeclared inC, dt is (recursively) the declared
type of its precursors in the corresponding parents.

• For the predefined entityCurrent, dt is C with its formal generic parameters if any.

• For the predefined entityResult, appearing in a function,dt is the return type
declared for the function.

• For any other entitye, dt is the type used in the declaration ofe.

Definition: type of a feature

In this book, the “type” of a feature or entity, without further qualification, always
means its declared type (rather than its base type).

10.23 RULES ON JOINING FEATURES

Definition: precursor (joined features)

A precursor of an inherited feature is a version of the feature in the parent from
which it is inherited. Without the join mechanism there was just one precursor; but
a feature which results from the join of two or more deferred features will have all
of them as precursors.

Join rule

It is valid for a classC to inherit two different features as deferred under the same final
name if and only if, after possible redeclaration inC, they have identical signatures.

VDRD

VDJR

§10.21 ORIGIN AND SEED 39

1 • f is introduced inC as an attribute or a routine whose Routine_body is of the
Effective form (that is to say, not the keyworddeferred but beginning withdo, once
or external).

2 • f is an inherited feature, coming from a parentB of C where it is (recursively)
effective, andC does not undefine it.

3 • Another feature ofC with the same final name is (recursively) effective. That
feature is then said toeffect f in C.

A feature ofC is adeferred feature of C if and only if it is not an effective feature
of C.

Condition 3 defines the effecting case: an effective feature, which has the same final
name as one or more deferred features, serves as effecting for all of them.

Definition: deferred, effective class

A class isdeferred if it has at least one deferred feature. It iseffective otherwise.

10.21 ORIGIN AND SEED

Definition: origin, seed

Every feature of a classC has a seed, which is a feature, and an origin, which is a class,
defined as follows.

1 • Any immediate feature ofC (in other words, any feature introduced inC rather than
inherited) is its own seed, and hasC as its origin.

2 • An inherited feature ofC with two or more precursors, all of which have
(recursively) the same seeds, also hass as its seed. (This is the case of sharing under
repeated inheritance.)

3 • If C joins a set of inherited deferred features, yielding (as explained above) a single
feature ofC to which case 2 does not apply, that feature is its own seed and its origin
is C.

4 • Any feature ofC to which none of the previous cases applies is inherited, and has
exactly one precursor; then its seed and origin are (recursively) the seed and origin
of that precursor.

10.22 REDECLARATION RULES

Definition: redeclaration, redefinition, effecting

A classC redeclares an inherited featuref if and only if one of the following two
conditions holds:

• C contains a Feature_declaration for a featureg with the same final name asf.

• C inherits f as deferred, and inherits as effective another featureg with the same
final name asf.

A redefinition is a redeclaration which is not an effecting.

§10.1738

10.17 THE JOIN MECHANISM

If C inherits and joins two or more deferred features, the net result forC is as if it had
inherited a single deferred feature. In the absence of further action fromC, that feature
remains deferred. Of course,C may also provide an effective declaration for the feature,
killing several abstract birds with one concrete stone by using a single redeclaration to
effect several features inherited as deferred.

10.19 REDEFINITION AND UNDEFINITION RULES

Redefine Subclause rule

Consider a classC with a parentB. If a Parent part forB in C contains a Redefine
subclause, that clause is valid if and only if every Feature_identifierfname that it lists (in
its Feature_list) satisfies the following conditions:

1 • fname is the final name inC of a feature inherited fromB.

2 • That feature was not frozen, and was not a constant attribute.

3 • fname appears only once in the Feature_list.

4 • The Features part ofC containsoneFeature_declarationone Feature_declarationfor
fname, which is a valid redeclaration, but not an effecting, of the original feature.

The effect of redefining a feature in a class is that any use of the feature in the class, its
clients or (barring further redefinitions) its proper descendants will refer to the redefined
version rather than the original.

Undefine Subclause rule

Consider a classC that inherits from a classB. If a Parent part forB in C contains an
Undefine subclause, that clause is valid if and only if, for every Feature_identifierfname
that it lists (in its Feature_list):

1 • fname is the final name inC of a feature inherited fromB.

2 • That feature was not frozen, and was not an attribute.

3 • That feature was effective inB.

4 • fname appears only once in the Feature_list.

10.20 DEFERRED AND EFFECTIVE FEATURES AND CLASSES

Definition: effective feature, deferred feature, effecting

A featuref of a classC is said to be aneffective feature of C if and only if any of
the following conditions holds.

Redefine redefine Feature_list

Undefine undefine Feature_list

=
∆

=
∆

VDRS

VDUS

§10.2 REDECLARING INHERITED FEATURES: WHY AND HOW 37

10 Feature adaptation

10.2 REDECLARING INHERITED FEATURES: WHY AND HOW

Definition: redeclaration

A class that contains a redefinition or effecting of an inherited feature will be said
to redeclare that feature.

10.6 THE REDEFINITION CLAUSE

Definition: precursor

If a class inherits a feature from a parent, either keeping the feature unchanged or
redefining it, the parent’s version of the feature is called the precursor of the feature.

10.15 REDECLARATION AND ASSERTIONS

Consider a routine redeclaration and letpre1, ...pren be the precursors’ preconditions and
post1, ...,postn be the precursors’ postconditions. Assume that new assertion clauses are
present, of the form:

require else alternative_precondition

ensure then extra_postcondition

Then the redeclared routine will be considered to have the precondition and postcondition

alternative_preconditionor else pre1 or else... or else pren

extra_postconditionand then post1 and then ... and then postn

 If, in a routine redeclaration, the Precondition part is absent, the redeclared routine is
considered to havefalse as itsalternative_precondition; if the Postcondition part is
absent, the redeclared routine is considered to havetrue as itsextra_postcondition.
Because of the rules of boolean algebra, the absence of one of these assertions means that
the corresponding precursor assertion is kept as it was. (Or-ing a boolean value withfalse,
or and-ing it withtrue, does not change the condition.)

For a declaration of an immediate feature of a class, therequire else form of Precondition
clause has the same meaning as if it were introduced by justrequire, and theensure then
form of Postcondition clause has the same meaning as if it were introduced by just
ensure.

10.16 UNDEFINING A FEATURE

Definition: inherited as effective, as deferred

In the rest of this discussion, an inherited feature is said to be inherited as effective
if it has at least one effective precursor and the corresponding Parent part does not
undefine it. Otherwise the feature is inherited as deferred.

§9.1636

9.16 CORRECTNES S OF A CLASS

Definition: correctness (class)

A class iscorrect if and only if it is consistent and every routine of the class is
check-correct, loop-correct and exception-correct.

9.17 SEMANTICS OF ASSERTIONS

For a correct system, assertions, in all cases, will have no effect on the semantics of
system execution (except through possible side effects of the functions called by
assertions). For an incorrect system, the effect depends on compilation or execution
options. Various options of the environment will make it possible to evaluate assertions.
If an assertion evaluates to true, it has no further effect on the outcome of the
computation. If it evaluates to false, it will trigger an exception, disrupting the normal
flow of computation, as discussed in the chapter on exception handling.

During the evaluation of an assertion, further assertion evaluation is disabled.

An assertion violation detected as a result of enabling assertion monitoring at one of the
above levels triggers an exception. An exception will also result, at levelloop or higher,
if a loop iteration fails to decrease the variant or gives it a negative value.

Here is the rule for determining the recipient of an exception resulting from an assertion
violation:

1 • For postconditions, class invariants, loop invariants, variants and Check
instructions, the recipient is the routine whose text contains the violated assertion or
variant.

2 • For a violated precondition, the recipient is the calling routine. In this case no
component of the routine’s body is executed; the routine fails immediately, not
performing any of its normal actions, and triggering an exception in the caller.

§9.13 CHECK INSTRUCTIONS 35

In this rule,INVC is the invariant ofC and, for any routines, pres is the precondition
of s, posts its postcondition, anddos its body.

9.13 CHECK INSTRUCTIONS

Definition: check-correct

An effective routiner is check-correct if, for every Check instructionc in r, any
execution ofc (as part of an execution ofr) satisfies all its assertions.

9.14 LOOP INVARIANTS AND VARIANTS

A Variant is valid if and only if its Expression is of typeINTEGER.

The invariant assertionINV of a loop must have the following two properties:

• The loop’s Initialization (fr om clause) ensures the truth ofINV.

• Any execution of the Loop_body, when started in a state that does not satisfy the
Exit_condition, preserves the truth ofINV (in other words, leavesINV true if it finds
INV originally true).

Definition: loop-correct

A routine is loop-correct if every loop it contains satisfies the following four
conditions:

1 • { true} INIT { INV}

2 • { true} INIT { VAR >= 0}

3 • { INV and then not EXIT} BODY{ INV}

4 • { INV and then not EXITand then (VAR = v)} BODY{ 0 ≤ VAR < v}

whereINV is the loop’s invariant,VAR its variant,INIT its Initialization,EXIT its
Exit condition, andBODY its Loop_body.

Check check Assertionend

Variant variant [Tag_mark] Expression

=
∆

=
∆

VAVE

§9.934

Definition: availability of an assertion clause

An Assertion_clausea of a routine Precondition or Postcondition isavailable to a
classB if and only if all the entities involved ina are available toB, with the
convention that formal arguments andResult are available to all classes.

9.9 OLD EXPRESSION

An Old expression of the formold e, wheree is an expression of typeTE, is valid
if and only if it satisfies the following two conditions:

1 • It appears in a Postcondition clause of a Routiner.

2 • Transformingr into a function with result typeTE (by adding a result type ifr is
procedure, or changing its result type if it is already a function) and replacing its
entire Routine part bydo Result:= eend would yield a valid routine.

The value of an Old expressionold e is defined only at the end of the execution of a call
to r, just before the call returns; it is the result that would have been produced by
evaluatinge just before the call’s execution began.

9.11 CLASS INVARIANTS

Definition: invariant of a class

The invariant of a classC is an assertion obtained by concatenating the following
assertions (omitting any one which is absent or empty):

1 • The invariants of all parents (determined recursively through the present rule), in
the order of the corresponding Parent clauses.

2 • The postconditions of any inherited functions whichC redefines as an attribute,
with every occurrence ofResult replaced by the attribute’s final name. (If there are
two or more such redefinitions, include them in the order in which their new
declarations appear inC.)

3 • The Assertion inC’s own Invariant clause, if any.

9.12 CONSISTENCY OF A CLASS

Definition: consistency

A classC is consistent if and only if it satisfies the following two conditions:

1 • For every creation procedurep of C: {prep} dop { INVC ∧ postp}

2 • For every routiner of C exported generally or selectively:
{ prer ∧ INVC} dor {postr ∧ INVC}

Old old Expression=
∆

VAOL

§9.5 FORM OF ASSERTIONS 33

9 Correctness

9.5 FORM OF ASSERTIONS

In an Assertion, the semicolon separating each Assertion from the next has the same
semantics as theand then infix boolean operator. This means that the order of the clauses
may be meaningful:

1 • The value of an Assertion is true if and only if every Assertion_clause in the
Assertion has value true.

2 • If an Assertion_clause has value false, the whole Assertion in which it appears has
value false, even if the value of a subsequent clause is not defined.

9.7 THE SPECIFICATION OF A ROUTINE

Definition: specification, subspecification

Let pre and post be the precondition and postcondition of a routinerout. The
specification ofrout is the pair of assertions <pre, post>.

A specification <pre', post'> is said to be a subspecification of <pre, post> if and
only if pre implies pre' and post' implies post. Here “implies” is boolean
implication.

9.8 CONSTRAINTS ON ROUTINE ASSERTIONS

A Precondition of a routiner of a classC is valid if and only if every feature whose final
name appears in any Assertion_clause is available to every class to whichr is available.

Precondition require [else] Assertion

Postcondition ensure [then] Assertion

Invariant invariant Assertion

Assertion {Assertion_clause ";" ...}

Assertion_clause [Tag_mark]

Unlabeled_assertion_clause

Unlabeled_assertion_
clause

Boolean_expression | Comment

Tag_mark Tag ":"

Tag Identifier

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

VAPE

§8.932

8.9 TYPES OF INSTRUCTIONS

Instruction Creation |

Call |

Assignment |

Assignment_attempt |

Conditional | Multi_branch | Loop |

Debug | Check | Retry

=
∆

§8.6 ROUTINE BODY 31

2 • In the other cases (where the Routine_body is External or Deferred), there is neither
a Local_declarations part nor a Rescue part.

8.6 ROUTINE BODY

The introductory keywordsdo or once of an Internal body correspond to different
semantics for calls to the routine:

1 • For ado body, as indicated above, the initializationof local entitiesandthe body
are executed anew on each call.

2 • If routine o of classC has aonce body (o is then called a “once routine”), the
initialization and body ofo are executed only for the first call too applied to an
instance ofC during any given session. For every subsequent call too applied to an
instance ofC during the same session, the routine call has no effect; if the routine is
a function, the value it returns is the same as the value returned by the first call.

8.7 LOCAL ENTITIES AND Result

Local Entity rule

Let ld be the Local_declarations part of a routiner in a classC. Let locals be the
concatenation of every Identifier_list of every Entity_declaration_group inld. Thenld is
valid if and only if every Identifiere in ld satisfies the following two conditions:

1 • No feature ofC hase as its final name.

2 • No formal argument ofr hase as its Identifier.

Definition: local entity

Most of the rules governing the validity and semantics of declared local entities also
apply to a special predefined entity:Result, which may only appear in the Routine_
body or Postcondition of a function, and denotes the result to be returned by the
function. Reflecting this similarity, this book uses the term "local entity" to cover
Result as well as declared local entities.

Routine_body Effective | Deferred

Effective Internal | External

Internal Routine_mark Compound

Routine_mark do | once

Deferred deferred

Local_declarations local Entity_declaration_list

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

VRLE

§8.330

8 Routines

8.3 FORMAL ARGUMENTS

Formal Argument rule

Let fa be the Formal_arguments part of a routiner in a classC. Let formals be the
concatenation of every Identifier_list of every Entity_declaration_group infa. Thenfa is
valid if and only if no Identifiere appearing informals is the final name of a feature ofC.

Let el be an Entity_declaration_list. Letidentifiers be the concatenation of every
Identifier_list of every Entity_declaration_group infa. Thenel is valid if and only if no
Identifier appears more than once in the listidentifiers.

8.5 ROUTINE STRUCTURE

Routine rule

A Routine part of a routine declaration is valid if and only if one of the following
conditions holds:

1 • Its Routine_body is an Internal body (beginning withdo or once).

Formal_arguments "(" Entity_declaration_list ")"

Entity_declaration_list {Entity_declaration_group ";" ...}

Entity_declaration_group Identifier_list Type_mark

Identifier_list {Identifier "," ...}+

Type_mark ":" Type

Routine [Obsolete]

[Header_comment]

[Precondition]

[Local_declarations]

Routine_body

[Postcondition]

[Rescue]

end ["--" Feature_name]

=
∆

=
∆

=
∆

=
∆

=
∆

VRFA

VREG

=
∆

VRRR

§7.14 DESCRIBING A CLASS FOR CLIENTS: THE SHORT FORM 29

1 • At most one of thefeature_listi is the keywordall.

2 • All the otherfeature_listi are lists of final names of features ofC obtained fromB.

3 • No final feature name appears twice in any such list, or appears in more than one
list.

An immediate feature of a class has the following export status:

• If the Feature_clause which introduces it has no Clients part (that is to say, begins
with the keywordfeature with no further qualification), the feature is exported
(generally available).

• If the Feature_clause which introduces it has a Clients part (that is to say, begins
with feature { A, B, C...}), the feature is selectively available to the descendants of
the classes listed in that Clients part, and to these descendants only.

Definition: secret

If a Feature_clause has an empty Clients list, that is to say, begins withfeature {},
or if it begins withfeature { NONE}, then the features it introduces are secret.

If a non-redeclared inherited featuref has more than one precursor, it is available to all
classes to which it would be available as a consequence of applying the preceding rule
separately to each of its precursors.

7.14 DESCRIBING A CLASS FOR CLIENTS: THE SHORT FORM

Definition: short form, abstract form

The short form of a class, also called its abstract form, is a text which has the same
structure as the class but does not include non-public elements. The short form is
the one that should be used as interface documentation for the class.

7.15 THE FLAT-SHORT FORM

Definition: flat-short form

The flat-short form of a class is similar to the short form, but applies to the
“reconstructed” full text of a class; you may view it as resulting from a shortening
step that has been preceded by a “flattening” step, which expands the class text to
unfold all the features obtained from proper ancestors, putting them at the same
level as the immediate features of the class. Clearly, flattening must take both
renaming and redefinition into account.

§7.1228

7.12 THE EXPORT STATUS OF FEATURES

Definition: exported, selectively available

The status of a feature of a class is one of the following:

1 • The feature may be available to all classes. Such a feature is said to beexported, of
or generally available.

2 • The feature may be available to specific classes only. In that case it is also available
to the descendants of all these classes. Such a feature is said to beselectively
available to the given classes and their descendants.

3 • The feature may be available to no classes. Then it is said to besecret.

Definition: available

A feature of a classS is said to beavailable to a classC if and only if it is either
selectively available toSC or generally available.

7.13 ADAPTING THE EXPORT STATUS

A Clients part is valid if and only if every Class_name appearing in its Class_list is the
name of a class in the surrounding universe.

Export List rule

A New_exports parent appearing in classC in a Parent clause for a parentB, of the form

export {class_list1} feature_list1; ... {class_listn} feature_listn

is valid if and only if (fori in the interval 1..n):

Clients "{" Class_list "}"

Class_list {Class_name "," ...}

New_exports export New_export_list

New_export_list {New_export_item ";" ...}

New_export_item Clients Feature_set

Feature_set Feature_list |all

Feature_list {Feature_name "," ...}

=
∆

=
∆

VLCP

=
∆

=
∆

=
∆

=
∆

=
∆

VLEL

§7.3 CONVENTIONS 27

7 Clients and exports

7.3 CONVENTIONS

Definition: client

A classC is aclient of a typeS if some ancestor ofC is a simple client, an expanded
client or a generic client ofS.

Definition: client relation between classes

A classC is a client of a classB if C is a client of a type whose base class isB. B.

Definition: dir ect and indirect client relations

A classC is adirect or indirect client of a typeS of basetypeclassB if there is a
sequence of classesC1 == C1 = A, C2, ...,Cn == Cn = B such thatn > 1 and every
Ci is a client ofC{i+1} Ci+1 for 1 le i lt 1 ≤ i ≤ n.

The “direct or indirect” forms of the simple client, expanded client and generic
client relations are defined similarly.

7.4 SIMPLE CLIENTS

Definition: simple client

A classC is asimple client of a typeS if some entity or expression ofC is of typeS.

7.5 EXPANDED CLIENTS

Definition: expanded client

A classC is anexpanded client of a typeS if S is an expanded type and some
attribute ofC is of typeS.

Expanded Client rule

It is valid for a classC to be an expanded client of a classSC if and only ifSC is not
a direct or indirect expanded client ofC.

7.6 GENERIC CLIENTS

Definition: generic client, generic supplier

A classC is ageneric client of a typeS if for some generically derived typeT of
the formB [..., S,...] one of the following holds:

1 • C is a client ofT.

2 • One of the Parent clauses ofC, or of a proper ancestor ofC, listsT as parent.

VLEC

§6.1226

6.12 ANY

Any class other thanGENERAL andANY which does not include an explicitly written
Inheritance clause is considered to have an implicit clause of the form

inherit ANY

6.15 PROVIDING YOUR OWN UNIVERSAL CLASS

Whether you use the defaultANY or another one, any system will need to have a class of
nameANY. This is a constraint on any valid universe.

VHAY

§6.10 FEATURES AND THEIR NAMES 25

6.10 FEATURES AND THEIR NAMES

Definition: name of a feature in a class

Within the text of a classC, any featuref of C is accessible through a feature name,
known as the name off in C. As this expression suggests, the association between
a feature and a feature name is not absolute but relative to a class. The same feature
may well be denoted by different names in different classes.

Definition: original name

Theoriginal name of a feature is the name under which it is declared in its class of
origin.

Definition: final name

Every featuref of a classC has a final name inC, defined as follows:

• If f is immediate inC, its final name is its original name

• If f is inherited,f is obtained from a feature of a parentB of C. Let parent_name be
(recursively) the final name of that feature inB. Then:

• If the Parent clause forB in C contains a Rename_pair of the formrename parent_
nameas new_name, the final name off in C isnew_name. Otherwise, the final name
is parent_name.

Definition: final name set

The final names of all the features of a class constitute the final name set of a class.

Definition: inherited name

The inherited name of a feature obtained from a featuref of a parentB is the final
name off in B.

Definition: name of a feature

In this book, references to the “name” of a feature, if not further qualified, always
denote the final name.

6.11 INHERITANCE AND EXPANSION

The only consequence of the expansion status of a class is the semantics of entities of the
corresponding types, such asx above. An expanded class may inherit from an non-
expanded one, and conversely. The expansion status is not transmitted under inheritance;
it is entirely determined by the presence or absence of theexpanded mark in the class’s
own Class_header, not by any property of its parents.

§6.624

Definition: ancestor, descendant

ClassA is anancestor of classB if and only if A is B itself or, recursively, an
ancestor of one ofB’s parents.

ClassB is adescendant of classA if and only ifA is an ancestor ofB, in other words
if B is A or (recursively) a descendant of one of its heirs.

Definition: proper ancestor, descendant

Theproper ancestors of a classC are its ancestors other thanC itself. Theproper
descendants of a classB are its descendants other thanB itself.

6.6 THE INHERITANCE STRUCTURE

Parent rule

The Inheritance clause of a classD is valid if and only if it meets the following two
conditions:

1 • In every Parent clause for a classB, B is not a descendant ofD.

2 • If two or more Parent clauses are for classes which have a common ancestorA, D
meets the conditions of the Repeated Inheritance Consistency constraint forA.

6.9 RENAMING

Rename Clause rule

A Rename_pair of the formold_nameas new_name, appearing in the Rename subclause
of the Parent clause for B in a class C, is valid if and only if it satisfies the following five
conditions:

1 • old_name is the final name of a featuref of B.

2 • old_name does not appear as the first element of any other Rename_pair in the same
Rename subclause.

3 • new_name satisfies the Feature Name rule forC.

4 • If new_name is of the Prefix form,f is an attribute or a function with no argument.

5 • If new_name is of the Infix form,f is a function with one argument.

Renaming does not affect the semantics of an inherited feature, but simply gives it a new
final name in an heir, as defined below.

Rename rename Rename_list

Rename_list {Rename_pair "," ...}

Rename_pair Feature_nameas Feature_name

VHPR

=
∆

=
∆

=
∆

VHRC

§6.3 FORM OF THE INHERITANCE PART 23

6.3 FORM OF THE INHERITANCE PART

Definition: parent clause for a class

The Parent_list names a number of Parent clauses. Each Parent clause is relative to
a Class_type, that is to say a class nameB possibly followed by actual generic
parameters (as inB [T, U]). B must be the name of a class in the universe to which
the current class belongs. The clause is said to be a “Parent clause forB”.

6.4 RELATIONS INDUCED BY INHERITANCE

Definition: heir, parent

If classC has a Parent clause forB, thenC is said toinherit from B; B is said to be
a parent of C, andC is said to be anheir of B.

Inheritance inherit Parent_list

.xk inherit

Parent_list {Parent ";" ...}

Parent Class_type [Feature_adaptation]

Feature_adaptation [Rename]

[New_exports]

[Undefine]

[Redefine]

[Select]

end

Inheritance inherit Parent_list

Parent_list {Parent ";" ...}

Parent Class_type [Feature_adaptation]

Feature_adaptation [Rename]

[New_exports]

[Undefine]

[Redefine]

[Select]

end

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§6.222

6 The inheritance relation

6.2 AN INHERITANCE PART

Definition: multiple, single inheritance

Multiple inheritance occurs as soon as there is more than one Parent clause (even if
they all refer to the same parent class, a case called repeated inheritance and studied
in chapter 11).

§5.17 OBSOLETE FEATURES 21

The special case is that of a multiple declaration introducing Unique constant attributes,
which is covered by the Unique Declaration rule.

5.17 OBSOLETE FEATURES

Declaring a routine as Obsolete does not affect its semantics. But language processing
tools, or at least some of them, should produce a warning when they process a client or
descendant class that uses the routine. The warning should include the Message.

§5.1420

Definition: same feature name

By convention, two feature names are the same if and only if either of the following
conditions holds:

• They are both identifier features, with identical lower name.

• They are both operator features, both Prefix or both Infix, with identical lower
names.

5.14 VALIDITY OF FEATURE DECLARATIONS

Feature Declaration rule

A Feature_declaration appearing in a classC, and whose New_feature_list contains one
or more feature namesf1, ..., fn, is valid if and only if it satisfies all of the following
conditions:

• Its Declaration_body describes a feature which, according to the rules of 5.11, is
one of: variable attribute, constant attribute, procedure, function.

• None of thefi has the same name as another feature introduced inC (in particular,
fi is not the same name asfj for different i andj).

• If the name of any of the fi is the same as the final name of any inherited feature, the
Declaration_body satisfies the Redeclaration rule.

• If the Declaration_body describes a deferred feature, then none of thefi is preceded
by the keywordfrozen.

• If any of thefi is a Prefix name, the Declaration_body describes an attribute or a
function with no argument.

• If any of the fi is an Infix name, the Declaration_body describes a function with
exactly one argument.

• If the Declaration_body describes a once function, the result type involves neither
a Formal_generic_name nor an Anchored type.

5.16 SYNONYMS

Multiple Declaration rule

The semantics of a feature declaration applying to more than one feature name, as in

f1, f2, ... , fn some_declaration_body

is (except in one special case) defined as the semantics of the corresponding sequence of
declarations naming only one feature each, and with identical declaration bodies, as in:

f1 some_declaration_body;

f2 some_declaration_body;

...

fn some_declaration_body

VFFD

§5.12 THE SIGNATURE OF A FEATURE 19

5.12 THE SIGNATURE OF A FEATURE

Definition: signature

The signature of a featuref is a pair <argument_types, result_type> where both
argument_types andresult_type are sequences of types, defined as follows.

• If f is a routine,argument_types is the possibly empty sequence of the types of its
arguments. Iff is an attribute,argument_types is an empty sequence.

• If f is an attribute or a function,result_type is a one-element sequence, whose single
element is the type off. If f is a procedure,f is an empty sequence.

Definition: argument signature

The first component of a feature’s signature, writtenargument_types in this
definition, is called the argument signature of the feature. The argument signature
gives the types of the feature’s arguments; it is an empty sequence for attributes and
for routines without arguments.

5.13 FEATURE NAMES

Definition: identifier feature, operator feature

A feature declared with an identifier is called an identifier feature. A feature
declared with an operator is called an operator feature.

Feature_name Identifier | Prefix | Infix

Prefix prefix '"' Prefix_operator '"'

Infix infix '"' Infix_operator '"'

Prefix_operator Unary | Free_operator

Infix_operator Binary | Free_operator

Unary not | "+" | "\-"not | "+" | "-"

Binary "+" | "–" | "∗" | "^" | "+" | "–" | "∗" | "/" |

"<" | ">" | "<=" | ">=" |

"//" | "\\" | "^" |

and | or | xor |

and then | or else | implies

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§5.918

A routine is either aprocedure or afunction:

• A procedure does not return a result; it may perform a number of operations, some
of which may modify the instance to which the procedure is applied.

• A function returns a result and may also perform operations.

5.9 FEATURE DECLARATIONS: SYNTAX

5.10 COMPONENTS OF A FEATURE DECLARATION

5.11 HOW TO RECOGNIZE FEATURES

A Feature_declaration is avariable attribute declaration if and only if it satisfies the
following conditions:

• There is no Formal_arguments part.

• There is a Type_mark part.

• There is no Constant_or_routine part.

A Feature_declaration is aconstant attribute declaration if and only if it satisfies
the following conditions:

• There is no Formal_arguments part.

• There is a Type_mark part.

• There is a Constant_or_routine part, which contains either a Manifest_constant or
a Unique.

A Feature_declaration is aroutine declaration if and only if it satisfies the
following condition:

• There is a Constant_or_routine part, whose Feature_value is a Routine.

In this case the Formal_arguments and Type_mark parts may or may not be present.
If the Type_mark is present, the declaration describes afunction; otherwise it describes
a procedure.

Feature_declaration New_feature_list Declaration_body

Declaration_body [Formal_arguments]

[Type_mark]

[Constant_or_routine]

Constant_or_routine is Feature_value

Feature_value Manifest_constant |Unique | Routine

New_feature_list {New_feature "," ...}+

New_feature [frozen] Feature_name

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

§5.3 IMMEDIATE AND INHERITED FEATURES 17

5 Features

5.3 IMMEDIATE AND INHERITED FEATURES

Definitions: features of a class, inherited, origin, introduced

The features of a classC include its inherited features and its immediate features,
defined as follows:

1 • The features obtained byC from its parents, if any, are its inherited features.

2 • In the Features part ofC, consider a declaration describing a featuref. If f is
inherited, the declaration is in fact aredeclaration of f, giving f new properties in
C. If this is not the case,f is a new feature, said to be immediate inC. C is then the
class of origin (or simply “origin”) of f, which is also said to beintroduced in C.

5.6 FEATURES PART: SYNTAX

5.7 FORMS OF FEATURES

Every feature of a class is either anattribute or aroutine.

Definition: field

By introducing an attribute in a class, you specify that at run-time every instance of
the class will possess a certain value, or field, corresponding to the attribute.

An attribute is eithervariable or constant:

• If an attribute is variable, the corresponding fields may be different for various
instances of the class and may change at run-time. As a consequence, the actual
values must be stored in the representation of each instance.

• If an attribute is constant, the corresponding field is the same value for all instances,
and may not change at run-time. This value appears in the class as part of the
attribute declaration.

By introducing a routine in a class, you specify that a certain computation (an
algorithm) must be applicable to instances of the class.

Features feature {Feature_clausefeature ...} +

Feature_clause [Clients]

[Header_comment]

Feature_declaration_list

Feature_declaration_list {Feature_declaration ";" ...}

Header_comment Comment

=
∆

=
∆

=
∆

=
∆

§4.916

4.9 FORMAL GENERIC PARAMETERS

A Formal_generics part of a Class_declaration is valid if and only if every Formal_
generic_nameG appearing in it satisfies the following three conditions:

1 • G is different from the name of any class in the surrounding universe.

2 • G is different from any other Formal_generic_name appearing in the same Formal_
generics_part.

3 • If a Constraint is given, it does not involve any types other than class names and
formal generic parameters other thanG itself.

4.10 OBSOLETE CLAUSE

Declaring a class as Obsolete does not affect its semantics. But some language processing
tools should produce a warning when they process a class that relies, as client or
descendant, on an obsolete class. The warning should include the Message.

4.11 ENDING COMMENT

If present, the ending comment must repeat the Class_name given at the head of the class.

Formal_generics "[" Formal_generic_list "]"

Formal_generic_list {Formal_generic ","...}

Formal_generic Formal_generic_name [Constraint]

Formal_generic_name Identifier

Constraint "–>" Class_type

Obsolete obsolete Message

Message Manifest_string

=
∆

=
∆

=
∆

=
∆

=
∆

VCFG

=
∆

=
∆

VCRN

§4.5 CLASS TEXT STRUCTURE 15

4.5 CLASS TEXT STRUCTURE

4.7 INDEXING A CLASS

The Indexing clause has no effect on the execution semantics.

4.8 CLASS HEADER

A Class_header appearing in the text of a classC is valid if and only if it satisfies either
of the following two conditions:

1 • There is no header mark of thedeferred form, andC is effective.

2 • There is a Header_mark of thedeferred form, andC is deferred.

Class_declaration [Indexing]

Class_header

[Formal_generics]

[Obsolete]

[Inheritance]

[Creators]

[Features]

[Invariant]

end ["--" class Class_name]

Indexing indexing Index_list

Index_list {Index_clause ";" ...}

Index_clause [Index] Index_terms

Index Identifier ":"

Index_terms {Index_value "," ...}+

Index_value Identifier | Manifest_constant

Class_header [Header_mark]class Class_name

Header_mark deferred | expanded

Class_name Identifier

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

=
∆

VCCH

§4.214

4 Classes

4.2 OBJECTS

Definitions: object, instance

Viewed as a type, a class describes the properties of a set of possible data structures,
or objects, which may exist during the execution of a system that includes the class;
these objects are called the instances of the class.

4.3 FEATURES

Definitions: feature, attribute, routine

Viewed as a module, a class introduces, through its class text, a set offeatures.
Some features, calledattributes, represent fields of the class’s direct instances;
others, calledroutines, represent computations applicable to thoseinstances. .lY
instances.Since there is no other modular facility than the class, building a software
system in Eiffel means analyzing the types of objects the system will manipulate,
and writing a class for each of these types.

§3.4 SYSTEMS 13

case-independent names, even if the names are written with different case
conventions in the class texts.

3.4 SYSTEMS

Definition: System, Root

A system is a set of classes, one of which has been designated as theroot of the
system, such that all the classes on which the root depends belong to the system.

Definition: Dependency

Here a classC is said todepend on a classA if one of the following holds:

• C is an heir ofA.

• C is a client ofA.

• Recursively, there is a classB such thatC depends onB andB depends onA.

Root Class rule

A classC may be used as root of a system if and only if it satisfies the following three
conditions:

1 • C is not generic.

2 • C is not deferred.

3 • Any creation procedure ofC has either no formal argument, or a single formal
argument of typeARRAY[STRING].

3.5 CLUSTERS

Definition: Cluster

A cluster is a set of classes, all with different names.

No two classes in a given cluster may have the same class name.

3.6 UNIVERSES

Definition: Universe

A universe is a set of clusters.

VSRC

VSCN

§3.112

3 The architecture of Eiffel software

3.1 OVERVIEW

The constituents of Eiffel software are calledclasses. By extracting classes from a given
universe, you may assemble them into executablesystems. To keep your classes and your
development organized, it is convenient to group classes intoclusters.

These four concepts provide the basis for structuring Eiffel software:

• A class is a modular unit.

• A system results from the assembly of one or more classes to produce an executable
unit.

• A cluster is a set of related classes.

• A universe is a set of clusters, out of which developers will pick classes to build
systems.

Of these, only “class”, describing the basic building blocks, corresponds directly to
a construct of the language. To build systems out of classes, you will use not a language
mechanism, but tools of the supporting environment. As to clusters and universes, they
are not language constructs but mechanisms for grouping and storing classes using the
facilities provided by the underlying operating system, such as files and directories.

3.3 CLASS TEXTS AND CLASS NAMES

Every class has a name, such asDOCUMENT or PARAGRAPH, and a class text which
describes the features of the class and its other properties.

For class names, as for all uses of identifiers, letter case is not significant: identifiers
such asDOCUMENT, document and evendOcUmEnT have the same semantics when
viewed as class names.

Definition: Upper Name

Definition: Upper Name, Lower Name

The form of an identifier written all in upper-case is called the upper name of the
identifier; the form all in lower-case is called its lower name.

The standard recommended style in Eiffel texts is to write all class names using
exclusively the upper name of theclass, that is to say the name all in upper case (such as
DOCUMENT). class.

Definition: Class Name

The term “class name” as used in this book denotes the upper name of a class. In
particular, two classes are said to have the same class name if they have the same

§2.11 REQUIREMENTS ON LANGUAGE PROCESSING TOOLS 11

2.11 REQUIREMENTS ON LANGUAGE PROCESSING TOOLS

The definition of Eiffel syntax, validity and semantics contained in this book is also a
specification of certain aspects of the corresponding language processing tools.

Not all aspects apply to all language processing tools.

A language processing tool that processes software components at a certain level
(syntax, validity, semantics) is not required to perform the tasks associated with that level
on components which do notnot satisfy the requirements at the previous levels.

In almost all cases, authors of tools should follow a stricter guideline and make sure
that their toolsreject any input that does not satisfy the rules applying to the earlier
levels. Such rejection should include a clear error message. For syntax, the message
should identify the production which is not properly observed; for validity it should give
the code of the violated validity constraint (and the clause number for constraints divided
into clauses).

Two special considerations may justify occasional departures from this general
obligation of rejection:

1 • A semantic tool may be able to process valid parts of a text, even if other parts are
invalid. For example, a compiler may generate code for some valid classes in a
system, rejecting classes which are not valid.

2 • A tool author may have a particular reason for providing a tool or tool option which
accepts input violating a specific validity constraint. A possible application would
be for a prototyping mode which attempts to execute incomplete systems, or skips
certain checks. Such tool variants are outside of the semantics of Eiffel proper and
should be clearly labeled as such, reminding developers that acceptance of an input
text provides no guarantee that the text satisfies the full language rules.

One final note, intended for implementors of Eiffel, and regarding what they might
not find here. Although this book goes to great lengths to include every relevant validity
and semantic property, it may of course have left an occasional one out. Such an oversight
might be a case ofincompleteness (a missing validity constraint or semantic
specification) orinconsistency (ambiguous or contradictory answers).

If you run into such a case while trying to produce language processing tools, please
contact the language committee of NICE by sending electronic mail to <language-chair
@nice.twr.com>,

§2.710

Every validity constraint has a four-character code beginning with V (shown as
VVVV in the above fictitious example).

2.7 INTERPRETING THE CONSTRAINTS

General Validity rule

Every validity constraint relative to a construct is considered to include an implicit
supplementary condition stating that every component of the construct satisfies every
validity constraint applicable to the component.

2.8 SEMANTICS

A construct specimen which is syntactically legal and valid has an associated semantics,
specifying its run-time effect in a system in which the specimen appears. That semantics
may include executing certain actions, producing a value, or both. It is defined by the
paragraphs. For specimens made of further components, the specification usually refers
recursively to the components’ own semantics.

It is important to remember that theSEMANTICS paragraphs only apply to valid
specimens. In many cases, the semantic rules would not even make sense otherwise.
Clearly, attempting to describe the effect of an invalid component would be useless.

2.9 CORRECTNESS

Validity is only a structural property; valid Eiffel software is not guaranteed to perform
according to any expected behavior. In fact, execution of valid software may lead to non-
termination, or to exceptions and eventual failure.

For a valid component, then, we need a more advanced criterion: its ability to
operate properly at run-time. This is calledcorrectness and is a more elusive aim than
validity, since it involves semantic properties.

2.10 THE CONTEXT OF EXECUTING SYSTEMS

Definitions: run time, machine, platform, language processing tool

The following terminology will serve to discuss the context of system execution:

• Run time is the period during which a system is executed.

• Themachine is the combination of hardware (one or more computers) and operating
system which makes it possible to execute systems.

• The machine type, that is to say a certain kind of computer and a certain operating
system, is called aplatform.

• To make the text of an Eiffel system executable by a machine, you will need
software tools such as compilers and interpreters, for which this book will use the
term language processing tool, general enough to cover various implementation
techniques.

VBGVVBGV

§2.4 PRODUCTIONS 9

2.4 PRODUCTIONS

Definition: production

To understand a non-terminal, you need a formal description of the structure of its
specimens. Such a description is called theproduction for the construct.

A production has the form

Construct right-hand-side

Every non-terminal construct appears on the left-hand side of exactly one such

production. The symbol means “is defined as”.

The right-hand-side of the production describes the structure of specimens of the
left-hand-side construct. Three forms of right-hand-side are available:

• Aggregate, describing a construct made of a fixed number of parts (some of which
may be optional) to be concatenated in a given order.

• Choice, describing a construct having a number of given variants.

• Repetition, describing a construct made of a variable number of parts, which are all
specimens of a given construct.

An aggregate right-hand-side is a non-empty sequence of constructs, some of which
may be in square brackets [] to indicate optional parts.

A choice right-hand side is a non-empty sequence of constructs separated by
vertical bars | .

A repetition right-hand side is of one of the two forms

{Construct § ...} {Construct § ...}+

where §, the separator, is some construct — usually, but not necessarily, terminal.
Appearing in a production for a left-hand side construct R, this states that a specimen of
R consists of zero or more specimens of B, separated, if more than one, by the separator
§. In the first form, without a +, specimens of R may be empty; in the second form, with
a +, they must include at least one B.

2.6 VALIDITY

The productions and other elements labeled , as described so far, specify the
structure of constructs.

Definition: validity constraint, valid

Supplementary requirements on the syntactically well-formed specimens of a
construct are calledvalidity constraints on the construct. Paragraphs introducing
them are labeled by theVALIDITY road sign.

A specimen which follows the syntactic rules and satisfies the constraints will be
accepted by the language processing tools of any Eiffel environment and is said to
bevalid.

=
∆

=
∆

VVVV

§2.28

2 Syntax, validity and semantics

2.2 SYNTAX, COMPONENTS, SPECIMENS AND CONSTRUCTS

Eiffel’s syntax is the set of rules describing the structure of class texts. It covers neither
limitations on valid texts (described by validity constraints) nor the execution-time
meaning or effect of these texts (described by semantic rules).

Definition: component

Any class text, or syntactically meaningful part of that text, such as an instruction,
an expression or an identifier, is called acomponent.

Definition: construct, specimen

The structure of any components is described by aconstruct. A component
conforming to a certain construct is called aspecimen of that construct. For
example, the construct Class describes the structure of class texts; any particular
class text, built according to the rules given in this book, is a specimen of this
construct.

All constructs have names beginning with a capital letter and written in the default
(roman) font. Each appears in the index with a reference to the page of its syntactical
definition.

An important convention will simplify the discussions: the phrase “an X”, where X
is the name of a construct, serves as a shorthand for “a specimen of construct X”. For
example, “a Class” means “a specimen of construct Class”, in other words a text built
according to the syntactical specification of construct Class.

2.3 TERMINALS, NON-TERMINALS AND TOKENS

Every construct is either a “terminal” or a “non-terminal” as defined next.

Definitions: Terminal, Non-terminal, Token

Specimens of a terminal construct have no further syntactical structure. Examples
include reserved words (such asclass, Result etc.), constants such as integers, and
identifiers used to denote classes, features and entities. In contrast, the specimens
of a non-terminal construct are defined in terms of other constructs.

Definition: token, lexical component

The specimens of terminal constructs are calledtokens or lexical components.
They form the basic vocabulary out of which you may build more complex texts —
specimens of non-terminals.

§ CHANGES 7

A preliminary standard document for the Kernel Library, known asthe PELKS
(Proposed ELKS 95 (Eiffel Library Kernel Standard) is currently under study
Standard)has been adoptedby NICE. To avoid any ambiguity or contradiction, all
discussions of Kernel Library classes in this book have been replaced by references to the
PELKS.ELKS.

CHANGES

This bookcorrespndscorrespondsto the second printing ofEiffel: The Language. It
incorporates a few corrections corresponding to mistakes that have been detected since
the publication of the book. The principal among these changes are listed in chapter 14
of ISE Eiffel: The Environment(Technical Report TR-39/IE).

A complete list of the changes will be made available separately. Time prevented
inclusion of change bars for the first release of this document, but they will be part of
future editions; all changes have been carefully logged.

In case of discrepancy betweenEiffel: The Language andEiffel: The Reference,
follow the document that has the latest printing date, unless the problem appears to be due
to a text processing mistake. Remember that at the basis of Eiffel there is only one
document; the only differences result from how one selects and prints portions of that
document. This is the required condition for the stability, maturity and credibility of the
Eiffel language; in other words, for its success.

The present book uses the same conventions asEiffel: The Language. To avoid any
confusion, the original chapter and section numbers have been retained. So if you have
leafed through this book before reading the present preface, you may have wondered why
the first chapter is number 2 and its first section 2.2; but the purpose is clear: making it
easy to find the corresponding place inEiffel: The Language if when examining some part
of the edifice you want to retrieve the scaffolding — in other words some of the
supporting comments and examples. Using a different section numbering scheme for the
present book would have caused endless misunderstandings.

Unlike the sections, the pages have been renumbered, since consecutive numbering
facilitates searching for specific information.

In contrast withEiffel: The Language, this book avoids repetition of any kind. This
is why you will find no syntax summary or syntax diagram. Such elements (which are
present in the complete description) will be easy to add if readers feel they are necessary.

There is currently no index, but this omission will be repaired in a future version.

Finally, please remember that the present edition is only the second release ofEiffel:
The Reference. In particular, some errors may remain in the software that served to extract
the information and produce the index. Indulgence is thus requested from the reader.

ACKNOWLEDGMENTS

In addition to the acknowledgments included at the endof of the preface toEiffel: The
Language, it is appropriate to thank the various readers who have contributed comments
since the book’s publication, most remarkably David Hollenberg from the Information
Systems Institute of the University of Southern California and Helmut Weber from
Austria, formerly from IBM.

THE SHORT FORM

The worst that could happen to the description of Eiffel is to follow the fate of so many
earlier languages: the emergence of several descriptions, each slightly incompatible with
the others.Eiffel: The Language went to considerable length to prevent this from
happening. By threading several levels of discourse into a single cloth, the book was able
to forestall eventual divergence.

In particular, the book relied on an extensive system of “road signs” to identify each
of the interwoven threads: syntax, validity, semantics, comment, caveat, preview, reminder.

As this system is directly reflected in the source electronic form of the original
document, it is possible to use software tools, aided by a little human intervention, to
extract one or several of the threads. This approach is what made the present book
possible. It is not, strictly speaking, a new book, but anextract of the relevant parts of
Eiffel: The Language.

Another way of expressing this observation is to claim that producing this book was,
to a certain extent, a software project: writing the tools that would extract the essential parts
of the complete document and ignore the rest. This effort required some “massaging”, as
programmers say, of the original text, to mark some parts as retained and others as
discarded. But the extent of that massaging was remarkably limited: the text was organized
in such a systematic way that most of the extraction could be done automatically, based on
a number of selection rules not unlike those of a little expert systems.

Anyone familiar with the Eiffel method will have recognized the idea: it is the
notion of short form. To document an Eiffel class, you do not as a rule write a separate
document; you should instead include the relevant information in the class text itself, and
rely on computer tools to extract views of the class at various levels of abstraction, in
particular the short (or flat-short) form which only keeps the interface properties of the
class – signatures, preconditions, postconditions and header comments of exported
features, class invariant – while discarding the implementation information (non-
exported features, routine bodies, distinction between functions and attributes). Here we
are doing the same with respect to the language itself: using the power of the computer
to remove the non-essential information from a complete description.

The major advantage, in the case of classes, is that we can keep a single description.
So when things evolve – as they inevitably will, be they classes or languages – we have
only one document to maintain. This may be called theprinciple of single reference and
is essential to the smooth evolution of the language and its description.

Although the work of the NICE library committee may cause changes to be brought
to the present document independently ofEiffel: The Language, every effort will be made
to maintain the principle of single reference, avoiding the disaster that divergence
between the two documents would mean for Eiffel. In particular, the structure and section
numbering will be kept the same for the two books, and changes made to the present one
as a result of the committee’s work will be continuously reflected back into the electronic
version ofEiffel: The Language.

LIBRARY ELEMENTS

The definition of Eiffel relies on a number of predefined classes inthe "the “Kernel
Library", Library”, covering such fundamental notions as basic types (BOOLEAN,
INTEGERand the like), arrays, input and output.

§ WHAT IS EIFFEL? 5

Preface

This document serves two purposes:

• It is submitted to the Language Committee of theNonprofit International
Consortium for Eiffelas the second step towards a standard definition of Eiffel (the
first step was the bookEiffel: The Language).

• It provides users of Eiffel with a short language definition.

For the first of these goals, note that the present Preface is not part of the intended
Standard.

WHAT IS EIFFEL?

The name Eiffel covers a method and a language for the systematic development of
quality software, based on the full application of object-oriented principles.

Only the language aspect is covered in this book. Other documents are available on
the method and on the various compilers, tools and environments that make it possible to
develop software with Eiffel.

A complete description of the Eiffel language has been previously published: the
bookEiffel: The Language(Prentice Hall, second printing with corrections, 1992, ISBN
0-13-24795-7). The intent of that document is to provide under a single cover a precise
reference, a tutorial, a Guide for the Perplexed, and a detailed user’s manual for the
language. As a result, much of the space in it is occupied by examples, explanations,
justifications, discussions, previews, reminders and comments.Eiffel: The Language
does not shun repetition; occasionally, for example, some part ofthe thediscussion needs
to refer to the syntax of a construct seen in a distant chapter, and simply reproduces the
syntax specification for the convenience of the reader.

In some cases, however, a shorter reference may be necessary. A typical example is
that of someone implementing an Eiffel compiler, who may be presumed to be familiar
with the rationale behind the various components of the language, but will need a
documentwerewherehe can quickly find precise answers to specific questions, often on
fine points (“Can the target of an anchored declaration be anchored too?”). Another
example is that of a user who is familiar with the language but wants to keep a concise
reference on his desk.

Providing such a no-frills description of Eiffel is the purpose ofEiffel: The
Reference.

This book is not meant as a first introduction to Eiffel. If you do not know
the language, or know it only superficially, you should readEiffel: The
Language. The present book will mostly be useful as a summary ofEiffel:
The Language for readers who are familiar with that earlier book.

Must it be assumed that because we are engineers beauty is not our
concern, and that while we make our constructions robust and durable
we do not also strive to make them elegant?

Is it not true that the genuine conditions of strength always comply with
the secret conditions of harmony?

The first principle of architectural esthetics is that the essential lines of
a monument must be determined by a perfect adaptation to its purpose.

Gustave Eiffel, 1887

From his response in the newspaper Le Temps to a petition by
members of the literary and artistic Establishment protesting his
project of elevating a tower of iron in Paris.

Book identification
Eiffel: The Reference, ISE Technical Report TR-EI-41/ER.

Publication history
First published asEiffel: The Language (TR-EI-2/BR) in 1988. Successive versions appeared in
subsequent years and were replaced by TR-EI-17/RM,Eiffel: The Language in 1991, second revised
printing 1992, also available as a book published by Prentice Hall, ISBN 0-13-245-925-7. First edition
of Eiffel: The Reference under the present report number appeared in 1992. The present revision is
3.3.4, corresponding to version 3.3.4 of the ISE Eiffel environment. It is submitted to the Language
Committee of the Nonprofit International Consortium for Eiffel as revision 2 of the proposed Eiffel
language standard.7.

The first edition ofEiffel: The Reference under the present report number appeared in 1992.

Revision is 3.3.4, corresponding to version 3.3.4 of the ISE Eiffel environment, submitted to the
Language Committee of the Nonprofit International Consortium for Eiffel as revision 2 of the proposed
Eiffel language standard.

Current version: version 4.0, corresponding to revision 3 of the proposed language standard. This
version integrates numerous comments by James McKim (see appendix H) and correction of
typographical errors. 7 March 1997.

The majority of the material in the present book is excerpted fromEiffel: The Language.

Author
Bertrand Meyer.

Software credits
See “Credits” at the end of the Preface and inEiffel: The Language.

Cover design
Rich Ayling.

Copyright notice and proprietary information
Copyright © Bertrand Meyer, 1992, 1995.

The material fromEiffel: The Languageis reproduced here under permission from copyright holder and
the publisher for the exclusive benefit of users of ISE Eiffel 3. In addition, the copyright holder grants
permission to members in good standing of the Nonprofit International Consortium for Eiffel to make
any use of this document that does not infringe on the rights of other parties, in particular the publisher.

Eiffel:

The Reference

