110

8H

§H

109

108

8H

§H

107

106 8§G.4

§G.4

105

<< >> (for manifest arrays).

; (semicolon as separator between an Assertion_clause and th

2 next)

104

§G.2

G.2 RESERVED WORDS

alias all and as BIT BOOLEAN
CHARACTER check class creation Current debug
deferred do DOUBLE else elseif end
ensure expanded export external false feature
from frozen if implies indexing infix
inherit inspect INTEGER invariant is like
local loop NONE not obsolete old
once or POINTER prefix REAL redefine
rename require rescue Result retry select
separate STRING strip then true undefine
unique until variant when xor

G.4 OPERATORS AND THEIR PRECEDENCE

Level | Symbol

12

. (Dot notation for Unqualified_call expressions)

old (in postconditions) strip

11

not unary + unary —

All free unary operators

All free binary operators

" (power)

* [[l (integer division) \\ (integer remainder)

binary + binary —

=/=(notequal) < > <= >=

and and then

or orelse xor

W|Ph|OW|O| N| 0| ©

implies

8G VISIBLE FEATURES 103

G Reserved words, special symbols,
operator precedence

102

§D.12

D.12 SPECIFYING EXTERNAL ELEMENTS

Externals 8 external

{Language_contribution ";" ...}
Language_contribution £ Language ":" File_list
Language 4 Eiffel | Ada|Pascall

Fortran | C | Object| Make|

Name

D.13 GENERATION

Generation a generate{Language_generation ";" ...}
Language_generation 2 Language [Generate_option] ":" Target
Generate_option 4 (" Generate_option_value ")"
Generate_option_value £ yes|no

Target

(>

Directory | File

D.14 VISIBLE FEATURES

Visible
Class_visibility

Visibility _adaptation

External_class_rename
External_feature_rename
Creation_restriction
Export_restriction
External_feature_rename
External_rename_list

External_rename_pair

1> 1>

1>

L[> 1 > 1 - | [> > [

1>

visible {Class_visibility ";" ...}
Class_name [Visibility _adaptation]
[External_class_rename]
[Creation_restriction]
[Export_restriction]
[External_feature_rename]
end

asName

asName

creation {Feature_name "," ...}
export {Feature_name "," ...}
rename External_rename_list
{External_rename_pair "," ...}

Feature_namasName

SYNTAK

i

STYNTAR

0

SYNTAX

L

§D.11 SPECIFYING OPTIONS

101

Option

assertion

collect

debug

optimize

trace

Governs

Level of assertion
monitoring and
execution of Check
instructions.

Garbage collection

Execution of Debug
instructions

Optimization of
generated code

Generation of run-
time tracing
information for
every call to, and
return from, routines
of classes to which
the option applies.

Possible
values

no, require, all
ensure
invariant,loop,
check all

no, yes

no, yes, albr a
Name
representing a
Debug_key.
Valueyes
means the
same asll

no, yes, alj or
a Name
representing a
specific
optimization
level offered
by the
compiler.

no, yesor all.
Valueyes
means the
same asll.

Default

Default

Monitoring at each
level in this list also
applies to the
subsequent levels
(ensureimplies
precondition checking
etc.). Valueinvariant
means class invariantj
loop means
monitoring of loop
invariants and of loop
variant decrease;
checkadds execution
of checkinstructions;
all means the same a
check

[72)

In the Defaults or
Options clause for &
given clusteryes
governs class-level
optimization andll
means the same as
yes In the Ace-level
Defaults clauseyes
governs systemwide
optimization, anall
means the same as
yesplus class-level
optimization.

100

§D.11

D.11 SPECIFYING OPTIONS

Defaults
Options
Option_clause
Target_list
Option_tag
System_tag

Class_tag

Free_tag
Option_mark
Option_value
Standard_value

Class_value

Free_ value

L[> 11> > | [> > ||

[

1>

[

> 1>

[

[

default {Option_clause ";" ...}
option {Option_clause ";" ...}
Option_tag [Option_mark] [Target_list]
"' {Class_name ""..J
Class_tag | System_tag

collect| Free_tag

assertion| debug| optimize| trace |
Free_tag

Name

"(" Option_value)"
Standard_value | Class_value
yes|no |all | Free_value

require | ensure|

invariant |loop | check|

Free value

File_name | Directory_name | Name

SYNTAK

i

A Target_list may only appear in an Options paragraph, not in a Defaults paragraph. .
System_tag may only appear in an Ace-level Defaults clause.

WALIDITY

VDOC

8§D.8 STORING PROPERTIES WITH A CLUSTER 99

BYHNTAK

L

SYHNTAX

1

SYHNTAX

L

[Defaults]
[Options]
[Visible]

end["--" cluster Cluster_name]

D.8 STORING PROPERTIES WITH A CLUSTER

Use useFile

File

1> 1>

Name

To keep things simple, the Cluster_properties part contained in a Use file may not its
contain a Use paragraph.

D.9 EXCLUDING AND INCLUDING SOURCE FILES

Include 2 include File_list
Exclude 8 excludeFile_list
File_list 2 {File " ..}

D.10 ADAPTING CLASS NAMES

Name_adaptation 2 adapt Cluster_adaptation_list
Cluster_adaptation_list £ {Cluster_adaptation ";" ...}
Cluster_adaptation 2 Cluster_ignore |

Cluster_rename_clause
Cluster_ignore 8 Cluster_name ":fgnore
Cluster_rename_clause 2 Cluster_name ™"

rename Class_rename_list
Class_rename_list 8 {Class_rename_pair"," ...}
Class_rename_pair 2 Class_namasClass_name

98

§D.6

D.6 ACE STRUCTURE

Ace

System
System_name

Root

Class_name
Cluster_mark
Cluster_name

Creation_procedure

[

(1 [> §1> | [>

> 1> 1> 1>

System

Root

[Defaults]

[Clusters]

[Externals]
[Generation]

end["--" systemSystem_name]
systemSystem_name
Name

root

Class_name
[Cluster_mark]
[Creation_procedure]
Name

"(* Cluster_name ")"
Name

""" Name

D.7 BASICS OF CLUSTER CLAUSES

Clusters

Cluster_clause

Cluster_tag
Directory _name

Cluster_properties

1> 1>

1> 1>

cluster {Cluster_clause ";" ...}
[Cluster_tag]

Directory _name
[Cluster_properties]
Cluster_name ":"

Name

[Use]

[Include]

[Exclude]

[Name_adaptation]

SYNTAR

i

SYNTAX

L

8§D OVERVIEW 97

D Specifying systems in Lace

D.1 OVERVIEW

Language processing tools need a specification of where to find the classes and wh;
do with them.

Such a specification is called an Assembly of Classes in Eiffel, or Ace for sho
This appendix presents a notation, the Language for Assembling Classes in Eiffel,
Lace, for writing Aces.

This appendix describes Lace.
D.5 Basic conventions

Here is the list of Lace keywords.

adapt all as check cluster creation
default end ensure exclude export external
generate ignore include invarian keep loop
t
no option require rename root system
use visible yes.
Name 8 |dentifier | Manifest_string

A consistency condition applies to names used in an Ace: the Cluster_name m
be different for each cluster. It is valid, however, to use the same identifier in two or mc
VDCN of the roles of Cluster_name, System_name, Class_name.

ATRLIDITY

96

§25.15

§25.15 CHARACTERS 95

32 Basic classes

The basic clasBOOLEAN CHARACTER DOUBLE, INTEGER and REAL describe
arithmetic objects; clag30INTERdescribes opaque objects representing addresses to |
passed to non-Eiffel software. The specification of these classes may be found in
Proposed Eiffel Library Kernel Standard.

94 §25.15

31 Input and output

ClassesFILE and STANDARD_FILESprovide input and output facilities. Their
specification may be found in the Proposed Eiffel Library Kernel Standard.

§25.15 CHARACTERS 93

30 Persistence and environments

ClassSTORABLBprovides a mechanism for storing and retrieving object structures. It
specification may be found in the Proposed Eiffel Library Kernel Standard.

92 §25.15

29 Exception facilities

The Kernel Library clasEXCEPTIONSrovides a number of features for fine control of
the exception handling mechanism. Their specification may be found in the Proposed

Eiffel Library Kernel Standard.

§25.15 CHARACTERS 91

28 Arrays and strings

Arrays and strings are instances of the Kernel Library claSR&AYandSTRING The
specification of these classes may be found in the Proposed Eiffel Library Kerr
Standard.

90 §25.15

27 Universal features

The universal features are those of cGENERAL They are specified in the Proposed
Eiffel Library Kernel Standard.

§25.15 CHARACTERS 89

C3 e+ The sequencéso/code/ where code is an unsigned integer, representing the
character of codeode For example in ASCHBo0/59/represents the character of code
59, which is the semicolon.

The table of special character codes for form C2 is the following._

Special characte Character Mnemonic name
Code

@ %A At-sign

BS %B Backspace

A %C Circumflex

$ %D Dollar

FF %F Form feed

\ %H backslasH

tilda %L tiLda

NL (LF) %N Newline

‘ %Q [back] Quote

CR %R [carriage] Return

%S Sharp

HT %T [horizontal] Tab

NUL %U nUIl character

| %V Vertical bar

% %% percent

’ %’ single quote

! %" double quote

[%(opening bracket

] %) closing bracket

{ %< opening brace

} %> closing brace

88 §25.13

An Integer is a sequence of characters, each of which must be either:
* A decimal digit (0 to 9).
* An underscore (_), which may not be the first character.

If any underscore is present, then there must be three consecutive digits to the right
of every underscore, and there must not be any consecutive group of four digits.

Underscores, if any, have no effect on the integer value associated with the integ [[aeuanries

25.13 REAL NUMBERS |

A real number is made of the following elements: o

* An optionalintegerwritten-backwards, giving the integral part. (If this is l

absent, the integral part is 0.)
* Arequired “.” (dot).

* An optionalinteger which gives the fractional part. (If
this is absent, the fractional part is 0.)

* An optional exponent, which is the leteeor E followed by an optional sign (+ or
—) and an Integer. The Integer is required ifdlve E is present. This indicates that
the value appearing before ther E must be scaled by 10 sup n, wheres the
given integer.

No intervening character (blank or otherwise) is permitted between these elements.
The integral and fractional parts may not both be absent. If underscores are used in either
the integral part or the fractional part, they must also appear in the other part, unless it
has three digits or less.

Underscores, if any, have no effect on the integer value associated with the integ :'-iEHAmH:E

A Bit_sequence is a sequence of digits 0 or 1, followed lbyoa B, with no other -
intervening characters. | Erﬂlru

25.14 BIT SEQUENCES

25.15 CHARACTERS

Definition: character

A character is one of the following.

Cl e+ Any key associated with a printable character, except for the percet. Kéye
% key plays a special role for cases 2 and 3.)

C2 « The sequenceRowherek is a one-key code taken from the table given below. This
Is used to represent special characters such as the Backspace, repre$éBient as
characters which are not available on all keyboards, or have different codes on
different keyboards. An example is the opening bracket: when supported by the
keyboard, this character may be entered using form C1 as [; it may also, in all cases,
be represented &6(.

§25.11 STRINGS

87

The printable characters include letters, digits, underscore, the four charact
permitted as first character of a Free_operator and other special charactersssaich as
and$. They exclude Blank, New Line, Backspace and other characters with no exter
representation.

When used in expressions, the standard operators have various precedence le
as given in the discussion of expressions; free operators all have the same precede
higher than that of the standard operators.

Examples of free operators, used as function names, were given in the discussio
features. A simple one is @, used in infix form as a synonyimeforfor array accesst
@ iis thei-th element of.

The Basic Libraries contain only a small number of uses of free operators: @ f
element access in arrays and strings, # for rotation in bit sequences. Free operator:
mostly intended for developers in application areas that have a tradition of specializ
notations, such as physics and mathematics. The form of a free operator should atte
to suggest its meaning, just as with a well chosen identifier.

The first character of a Free_operator must be one of only four possibilities, n
used by any other construct of the language. As a result, any free operator will stand
clearly from its context, and no confusion or ambiguity is possible.

25.11 STRINGS

Definition: string

A String — a specimen of construct String — is an arbitrary sequence of characte
A Simple_string — a specimen of Simple_string — is a String which consists of
most one line (that is to say, has no embedded new-line character).

Do not confuse String or Simple_string with Manifest_string, seen in the discussic
of expressions. A specimen of Manifest_string, a non-terminal construct, is a Simpl
string enclosed in double quotes, aSSOMESTRING ML In the definition
of String, a “character” is a legal Eiffel character as defined later in this chapter. T}
includes in particular:

* Any keyboard key other th&b.

» Any special character described¥akfor some appropriate lette(for exampleéoB
representing the Backspace character).

* A character given by its numerical code under the forfodide/ (for example
%/35/for the sharp sign #, which is the character of ASCII code 35).

25.12 INTEGERS

Definition: integer

Integer, a variable lexical construct, describes unsigned integer constants in deci
notation.

Except for underscores, no intervening characters (such as blanks) are permi
between digits.

86 §25.9

function, may be used in lieu of a local entity, for example as target of an
assignment, and the basic tyipef EGERmay appear at a position where a type is
expected.

No intervening blanks or other characters are permitted between the letters of a
reserved word. Letter case is not significant for reserved words (S0LASIS, resultor '
evenrEsULt are permissible forms of some of the above examples.)

25.9 IDENTIFIERS

An Identifier is a sequence of one or more characters, of which the first is a letter and erz=
of the subsequent ones, if any, is a letter, a decimal digib) or the underscore
character “_” l

The definition indicates that the first character of an identifier must be a letter; in
particular, an identifier may not begin with an underscore. Also, no intervening blank is
permitted within an identifier. The validity constraint is obvious:

An identifier is valid if and only if it is not one of the language’s reserved words. Q

There is no limit to the length of identifiers, and all characters are significant; in
other words, to determine whether two identifiers are the same or not, you must take ¢ s
their characters into account. VIRW |

Letter case is not significant for letters: if you write two identifiera ardA, or
[InKeD_IliSTandLINKED_LIST they are considered the same. The recommended style
includes some standard conventions: class names and other type names in upper-case (as
in LINKED_LIST); names of routines, variable attributes and local entities in lower-case
(as initem); names of constant attributes and predefined entities with an initial upper-case

Ietter and the rest in Iower case (asé\m)gadroor R%ul}-DeﬁnMen—upper—namgLewer
, the

25.10 OPERATORS

When it comes to defining a function with one or two arguments, you may wish to use a
prefix or infix name.

Definition: operator

The names that may come in double quotes after infix (or prefix), and will be used
in the corresponding operator expressions, are called operators.

There are two kinds of operators: standard and free.

A Free_operator is not as free as the name would seem to suggest:

Definition: free operator

A Free_operator is sequence of one or more characters, whose first character is any one of
@#|&

and whose subsequent characters, if any, may be any printable characters.

§25.5 TEXT LAYOUT 85

In both cases the form is the same: a comment is made of one or more line segme
each beginning with two consecutive dash characters -- and extending to the end of
line.

| SYNTAX | Comment
l J

Comment_break

>

{Simple_string Comment_break ...}

New_line [Blanks_or_tabs] "--"

25.5 TEXT LAYOUT

An Eiffel text is a sequence; each of the elements of the sequence is a breal
comment or a token.

You may always insert a break between two sequence elements without affect
the semantics of the text.

A break is not required between two adjacent elements if one is a comment and
other a token or another comment. Between two successive tokens, a break may
required or not depending on the nature of the tokens.

We may divide tokens into two categories:

Definition: symbol, word

* A symbolis either a special symbol of the language, such as the semicolon “;” at
the . of dot notation, or a standard (non-free) operator such as stamtut not
including the alphabetic operators (suctoaslseandnot).

» A word is any token which is not a symbol.
It is permitted to write two adjacent tokens without an intervening break if and only
one is a word and the other is a symbol.
25.6 TOKEN CATEGORIES

There are two categories of tokens, fixed and variable:

» Fixed tokens have a single, frozen form. They include reserved words stlabsas
or Current, containing letters only, and special symbols such as := or {, containin
non-alphabetic characters.

» Variable tokens are specimens of terminal constructs such as Integer, Identifier
Free_operator.

25.7 RESERVED WORDS

Reserved words includeeywords andpredefined names

» Keywords, such aslassor feature, serve to introduce and delimit the various
components of constructs.

* Predefined names come at positions where variable tokens would also
permissible: for example, the predefined enRiysulf denoting the result of a

84 §25.2

25 Lexical components

25.2 CHARACTER CATEGORIES

The discussion will rely on a classification of characters into letters, digits and other
categories. To start with, it is useful to have a precise although obvious definition:

Definition: letter, digit, alphabetic, Printable

A letter is one of the twenty-six elements of the Roman alphabet, lower-case or upper-
case:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

A decimal digit is one of the ten charactér§ 23456789

An alphabetic character is a letter, a digit, or an underscore _.

A printable character is any one of the characters listed as printable in the definition

of the ASCII character set.

25.3 BREAKS

Definition: break character, break

A break is made of a sequence of one or more of the following characters, known
as break characters:

» Blank (also known as space).
e Tab.

* New Line (also known as Line Feed).

25.4 COMMENTS

Definition: comment

Comments may be expected or free:

* An expected comment is a specimen of the construct Comment, appearing in the
syntax as an optional component of some construct. An example is the Header_
comment of a Routine.

* Free comments, on the other hand, may appear at almost any position in a class text,
and are not covered by the syntax productions.

§24.7 THE CECIL LIBRARY 83

Here positionis an integer index which must be in the range of the bit sequenc
(counted from 1); otherwise the first two calls have undefined resultssifat_ith
returnsEIF_NO_BIT Routineseif_bit_setand eif _bit_clear set the element of index
positionto 1 and 0O, respectively. Functieif_bit_ithreturns an integer, the value of the
element of inde)position Functioneif_bit_lengthreturns an integer, the length of the
sequence. Functioaif bit_clonereturns arEIF_BIT, a fresh copy of the bit sequence
passed as argument.

82 §24.7

The next Cecil facility enables the C side to access fields of complex objects,
corresponding to attributes of the generating classes. To obtain a field of an object, use
the macroeif_field You may use the result @fif field in two different ways: as an
expression, or “r-value” in C terminology; or as a writable entity, or “I-value”, which may
then be the target of an assignment. Such an assignment will re-attach the corresponding
object field.

Functioneif_field takes three arguments. The first is a value of gj#e OBJ
representing an object; do not forget to protect iellyaccessThe second is a string
giving the name of the desired attribute. The third is one of the following values,
describing the type of the attribute:

EIF_BOOLEAN
EIF_CHARACTER
EIF_INTEGER
EIF_REAL
EIF_DOUBLE
EIF_POINTER
EIF_REFERENCE

The result okif_fieldis undefined if the object does not have a field with the given
name and type.

To call an Eiffel function returning a Bit_type result, use this scheme:
EIF_BIT your_bit; EIF_FN_BIT your_function;

your_function = eif_fn_bit (function_name, type_id);

your_bit = (your_function) (eif_access (object), actual_1, actual_2, ...)
The last instruction assigns your_bita reference to the bit sequence returned by the
function.EIF_BIT describes a pointer type.

Similarly, you may access and modify Bit_type fields as follows:
EIF_BIT your_bitl, your_bit2;

&/'(')ur_bitl = eif_bit_field (eif _access (your_object), "some_bit_attribute");
eif_bit_set_field (eif_access (your_object), "some_bit_attribute", your_bit2);

Here two primitives are needed. Functieif_bit_fieldtakes two arguments, an
object pointer (returned bgif _accespand an attribute name. In contrast weih field
the result ofeif_bit_fieldmay only be used as an expression (r-value), not as a writable
variable. To change the value of a Bit_type field, edebit_set field whose last
argument is the new value, of tyg#F_ BIT. If the object has no appropriate Bit_type
field, eif_bit_fieldreturns the valu&IF_NO_BFIELDand the effect oéif bit set_field
is undefined.

The following primitives are applicable your_bitof typeEIF_BIT:

§24.7 THE CECIL LIBRARY 81

SEMANTICS

BEMANTICS

itin a C variableyour_id, use the functioeif_type_idwhich returns a result of tyfdF
TYPE_ID

EIF_TYPE_ID your_id

your_id = eif_type_id"CLASSNAME);
If the class is generic, replace the last instruction by
your_id = eif_generic_i"CLASSNAME", genl, gen2,);

wheregenl, gen2,. are type-ids corresponding to the desired actual generic paramete
Functioneif_generic_idhas a variable number of arguments; the number of argumen
following the first one (CLASSNAME) must match the number of formal generic
parameters of the class of na@eASSNAME

The result returned beif type idor eif_generic_iddescribes a type which is
expanded if and only €TLASSNAMEs declared in Eiffel asxpanded classTo force a
result describing an expanded type, apgfy expandedo the result of either function;
the result is another type-id. All these functions return as result the erroEdod€O
TYPEIf they cannot compute a type-id (no class with the given name in the univers
more than one class, wrong number of generic parameters). It is possible to create
object from C, using the functiaif_createwhich takes allF_TYPE_IDargument and
returns arElIF_OBJ Here is the list of functions used for calling the various kinds of
Eiffel features from C, with their types and template arguments:

EIF_PROC eif_progroutine_name, type)d
EIF_FN_BOOL eif_fn_bodroutine_name, type_)d
EIF_FN_CHAR eif_fn_chafroutine_name, type)d
EIF_FN_INT eif_fn_in(routine_name, type_)d
EIF_FN_REAL eif fn_redlroutine_name, type)d
EIF_FN_DOUBLE eif_fn_doubléoutine_name, type)d
EIF_FN_POINTER eif_fn_pointdroutine_name, type_jd
EIF_FN_REF eif_fn_refroutine_name, type)d

In all cases the arguments are a string, representing a routine name, and a typ
(obtained througleif type_idor eif _generic_ig:

char starroutine_nameEIF_TYPE_ID type_id

These functions look for a routine of namoeitine_namen the base class of the
type corresponding ttype_id If no such routine exists, the result is a null pointer.
Otherwise it is a pointer to a C function representing the desired routine; you may th
call that function on appropriate arguments.

There is a major difference between the Eiffel call and its C emulation: dess| not
apply dynamic binding. What you get froneif_procor one of its sisters is a pointer to
a function representing the exact Eiffel routine of the given name in the given class.
the presence of polymorphism and redeclaration, the Eiffel call may trigger a differe
version ofgo depending on the type of the object attachemto _listat the time the call

is executed. The C form will always call the same version, regardless of the object’s ty

80 §24.3

24 Interfaces with other languages

24.3 EXTERNAL ROUTINES

External 8 external Language_name [Externa||_ | SYNTAX |
name] l '

Language _name 4 Manifest_string

External_name 2 alias Manifest_string

24.5 ARGUMENT AND RESULT TRANSMISSION

For external routines, follow thiée semantics of direct reattachment, interpreted as if -
each formal argument were declared wettactly the same type as the corresponding || SEMANTICS
actual.

24.6 PASSING THE ADDRESS OF AN EIFFEL FEATURE

An argument of the Address form is of tyP®INTER

The validity constraint on actual arguments of the Address form is clause 4 of the
argument validity rule, which maké&sf valid as actual argument to a call if and only if
is the final name of a feature of the enclosing class, and that feature is not a conste warimy:

attribute (which has no address). U

If the rule is satisfied, the feature will have a vergdbmapplicable to the current -
object: this is the version dffor the current object’'s generator (taking into account | SEMAKTIES
possible renaming and redefinition). The value passed for attachment to tl |
corresponding formal argument is the addresdfof his applies to both routines and
variable attributes; for an attribute, the call will pass the address of the field
corresponding talf in the current object.

24.7 THE CECIL LIBRARY

This section describes a library for interfacing with C software: Cecil.

The Cecil library contains macros, functions, types and error codes. All have names
beginning with eithereif (functions and macros) dEIF_ (types and error codes);
examples are the functianf type idand the typdlF PROGC explained below. Their
declarations appear in a C “header fileécil. h, which you may add to a C program
through the C preprocessor directive

#include <cecil h>

Let us now look at the principal facilities declareaatil. h. First of all, the C side
will need to refer to Eiffel types. It will know a type through a “type-id”, of t{fiE
TYPE_ID To obtain a type-id for a non-generic class of n&hASSNAMEnd record

§23.21 STRIP EXPRESSIONS 79

to attributesay, ...,a,, appearing in an order which only depends on &$kat is to say,
is the same for all possible values of the object CO).

78 §23.17

A

Bit_constant Bit_sequence

23.17 CHARACTER CONSTANTS

The value of a Character_constant is its middle Character.

[semanTics

23.18 MANIFEST STRINGS

A Manifest_string is valid if and only if it satisfies the following two conditions:
1+ None of the characters of its associated Simple_string is a double quote.

2+ Inthe extended form, no characters other than blanks or tabs may appear before the
initial % sign on the second and subsequent lines.

23.20 MANIFEST ARRAYS

Manifest_array

1> 1>

Expression_list {Expression "," ...}

Manifest Array rule

"<<" Expression_list ">>" | SYNTAX |

A Manifest_array <€y, e,, ...6,>> is a valid expression of tyg®RRAY[T] if and only

if the type of every conforms tor. WRLIDITY,

The value of a Manifest_array made Nfexpressions is an array of bounds 1 ahd YWMA
whose elements are the values of the successive expressions in the Manifest_array. In | SEMANTICS
definition, an “array” is an instance of the Kernel Library cBRRAY |

23.21 STRIP EXPRESSIONS

Strip
Attribute_list

strip "(" Attribute_list ")" | SYNTAX |

{Identifier "," ...}]

> 1>

A Strip expression appearing in a cl&s valid if and only if its Attribute_list satisfies
the following two conditions:

1+ Every Identifier appearing in the list is the final name of an attribue of TR

2+ No Identifier appears twice in the list. VWST|

Consider the evaluation of a Strip expression as part of a call to a rgutihese :
origin is a clas<. Letay, ..., a, be the set containing all the attributesCoéxcept for B
those listed in the Attribute_list, if present, of the Strip expression. Let CO be the curre |
object for the call (CO is an instance, not necessarily direct, of a type ba€dlden
the value of the expression is an array whose elements are the fields of CO corresponding

§23.11 ENTITIES

77

ATRLIDITY

VWID

SEMANTICS

BYNTAR

1

=

AALIDITY

VWCA |

An Equality expression involving two bit sequences yields true
if and only if, after right-padding if necessary, they are bit-by-bit identical.

23.11 ENTITIES

Identifier rule

An ldentifier appearing in an expression as part of the text of a rauima classC,
either by itself or as the target or actual argument of a Call, must be the name of a fea
of C, a local entity of, or a formal argument of

The value of an entity of each possible form, evaluated during a call to the enclosi
routine, is defined as follows:

 The value of a Local entity (includingResul} results from the successive
instructions that may have been applied to the entity since the default initializatior
performed anew on each call.

* The value of a routine’s Formal argument is obtained, according to the rules
direct reattachment, from the value of the corresponding actual argument at the ti
of the current call. This value may not change for the duration of that call (althouc
fields of the attached object, if any, may change).

» The value ofCurrentis the current object.

23.12 CONSTANTS

Constant Manifest_constant | Constant_attribute

Constant_attribute Entity

A Constant_attribute appearing in a cl&ss valid if and only if its Entity is the final
name of a constant attribute ©f

Manifest _constant 2 Boolean_constant |
Character_constant |
Integer_constantReal _constanf
Manifest_string | Bit_constant

Sign & nmyrn

Integer_constant 2 [Sigr Integer

Character_constant & ' Character "™

Boolean_constant 2 true |false

Real_constant 2 [Sigr Real

Manifest_string 2 ™ Simple_string ™

76 §23.7

Definition: multiary operator

Some binary operators are actually “multiary” — that is to say, may take three or
more operands, whose types all conform to the type of the first — while other
operators are limited to two arguments.

The semantics of an Operator_expression is simply the semantics of calls: the value o” P
operator expression is the value that would be returned by the equivalent dot form. Thic L'
complemented by a special rule seen below, semi-strict evaluation, for boolean operatc
23.7 ORDINARY BOOLEAN OPERATORS
The value ohot ais true if and only it has value false. The others are binary operators; P
the value they yield when applied to a first operand of valiend a second operand of L
valuev2is defined as follows:

» Forand: true if and only if botlvl andv2 are false.

» Foror: false if and only if eithevl orv2is false.

» Forxor: true if and only ifvl andv2 have different values. In other wordsxor b

has the same value asdr b) and not (a and b).

23.8 SEMI-STRICT BOOLEAN OPERATORS
For operands of valuad andv2 these operators yield the following results: T

» and then: false ifvlis false, otherwise the value . '

» or else true ifvlis true, otherwise the value w2.

» implies: true if vl is false, otherwise the value @?. (In other wordsa implies b

has the same value ast aor elseb.)
23.9 ARITHMETIC OPERATORS AND THE BALANCING RULE
Arithmetic Expression Balancing rule .
SEMANTICS

In determining the equivalent dot form of a Binary expression involving operands c¢*“
arithmetic types (one or more @OUBLE, REAL and INTEGER, first convert all
operands to the heaviest operand type occurring in the expression.

23.10 OPERATIONS ON BIT SEQUENCES

If b is a bit sequencenot b is a bit sequence of the same length, with a one at even [[umes
position whereb has a zero and conversely. -

If saandsbare bit sequences, each of the binary operators pads the shorter operu .
with zeros on the right if necessary to reach the number of bits, N, of the larger. For any
positioni (L<i<N) leta;b- c be thei-th bits ofsa,- sb sc Thencis a one if
and only if:

» Forand: a andb are ones.

» Foror: aorb or both are ones.

» Forimplies: ais a zero, ob is a one, or both of these conditions.
» Forxor: one amon@ andb is a one and the other is a zero.

§23.2 GENERAL FORM OF EXPRESSIONS 75

23 EXxpressions and constants

23.2 GENERAL FORM OF EXPRESSIONS

>

Call | Operator_expression | Equality |
Manifest_constant | Manifest_array |
Old | Strip

Expression

>

Boolean_expression

| SYNTAX | Expression
] .

A Boolean_expression is valid if and only if it is an Expression of BE®LEAN

23.3 EQUALITY EXPRESSIONS

Equality 2 Expression Comparison Expression
Comparison SRS S
° An Equality expression is valid if and only if either of its operands conforms to the othe
WELIOITY
VWEQ|
sEmANTICS The expressioe /= f has value true if and only & = f has value false.

| 23.5 OPERATOR EXPRESSION SYNTAX AND PRECEDENCE
RULES

IW Operator_expression 2 parenthesized | Unary_expression |
l Binary_expression
Parenthesized 8 (" Expression ")"
Unary_expression 4 Prefix_operator Expression
Binary_expression 2 Expression Infix_operator Expression

23.6 VALIDITY AND SEMANTICS OF OPERATOR EXPRESSIONS

ATRLIDITY

VWOE An Operator_expression is valid if and only if its equivalent dot form is a valid Call.

74

§22.9

IN
[]

If a routine ofC contains an Assignment of targeand source, the dynamic type
set ofx for T includes (recursively) every member of the dynamic type sstawfT.

If a routine ofC contains an Assignment_attempt of targetith type U, and
source e, the dynamic type set ot for T includes (recursively) every type
conforming to Y which is also a member of the dynamic type setfof T.

If a routine ofC contains a calh of targetta, U is (recursively) a member of the
dynamic type set dh for T, andtf is the version of the call’s feature in the base class
of U, then the dynamic type set forof any formal argument df includes every
member of the dynamic type set fof Of the corresponding actual argumenhin

If h, tf andU are as in case 6 atfds an attribute or function, the dynamic type set
of hfor T includes (recursively) every member of the dynamic type set{faflthe
Resultentity inftf.

§22.9 THE CALL VALIDITY RULE 73

22 Type checking

22.9 THE CALL VALIDITY RULE

Call rule
A call is valid if and only if it is both class-valid and system-valid.

Consider a single-dot call with targetappearing in a clasa LetSbe the type of
X. Then:

1+ The call isclass-validif it is export-valid and argument-valid f&

2+ The call issystem-validif for any elemenD of the dynamic class set #fit is
export-valid and argument-valid f@r.

| A call appearing in a clag3, havingfnameas the feature of the call, is
export-valid for a clasP if and only if it satisfies either of the following two conditions.

1+ The callis an Unqualified call afidameis the final name of a feature ©f

2+ The call has at least one dbDthas a feature of nanfikamewhich is available t&,
and the call's target is either a valid entity ©@for (recursively) a call which is
export-valid forD.

Consider an export-valid call of targargetand feature nam@mameappearing in
Q a clas<C. (For an Unqualified_call takargetto beCurrent) LetSTbe the type ofarget,
VALIDITY: Sthe base class &T, andsfthe feature of final nanfeamein S. LetD be a descendant

of S, anddfthe version o§fin D. The call is argument-valid f@ if and only if it satisfies

VUAR the following four conditions:

1+ The number of actual arguments is the same as the number of formal argume
declared fodf.

| 2+ Every actual argument, if any, conforms to tthecorresponding formal argument
of df.

3+ If targetis itself a Call, it is (recursively) argument-valid for

4+ |If any of the actual arguments is of the Address fbrim fn is the final name of a
feature ofC which is not a constant attribute.

The dynamic type sets of the expressions, entities and functions of a system re:
from performing all possible applications of the following rules to every ClassTiyge
base clas€, used in the system.

1+ If aroutine ofC contains a creation instruction, with targeind creation typ&J,
the dynamic type set offor T is {U+}.

2+ The dynamic type set fdrof an occurrence d@urrentin the text of a routine o
is {T}.

3+ For any entity or expressianof expanded type appearing in the texCofif the
type ET of e is expanded, the dynamic type seedbr T is {ET+}. (Rules 4 to 7,

when used to determine elements of the dynamic type set ofes@ssume thag's
type is not expanded.)

72 §21.14

effect of a qualified call of the forra. u, wheres is an expression and is an
Ungualified_call, is defined (recursively) as the effect of a call of the foum

executed after the assignment target s, v being a Writable entity used only for
this definition.

D5 « If dfis a function, the call is syntactically an expression; the value of that expression
is the value of the entitiResulton termination of the function’s execution.

D6 « If the values of any local entities have been saved under D2, restore these entities
to their earlier values. This terminates the execution.

§21.14 SEMANTICS OF CALLS 71

BEMANTICS

2+ If cr executes any construct other than a call, the current object and current rout
remain the same.

3+ If cr executes a qualified call of the fotarget. fname(...) where the valugarget
value of target is attached to an object OD, then for the duration of the call OL
becomes the new current object afidhe routine deduced fromameas discussed
earlier, becomes the new current routine. When the qualified call terminates, t
earlier CO andr resume their roles as current object and current routine.

4« Whencr executes an unqualified call, the current object remains the same, and th
is a new current routine for the duration of the call as in case 3.

21.14 SEMANTICS OF CALLS

Consider the execution, at a certain run-time instant, of a call
target. fname(yy, ..., ¥

To define its effect, cathrget valuethe value otargetat that instant.

The first possibility is fotarget_valuego be void. Then the call cannot be executed
correctly; it will fail, triggering an exception.

For the exception raised in this case, the Kernel Library d26SEPTIONS
introduces the integer codeid_call_target

The rest of this section assumes tiaagjet values not void. Thenarget_values
attached to some object OD, which must be a direct instance of som®Tyffer
“dynamic type”) based on some clda3sLetSThe the type of expressitargetandSthe
base class &T The rules of reattachment indicate tBdtconforms tdST, and thaD is
a descendant @&. Also, becaus®T has a direct instance OD, must be an effective
class.

If the call is valid, the constraint on calls implies thameis the final name of a
featuresf of classS, available to the class which contains the call.dfdie the version
of sfin D; dynamic binding means that the effect of the call is determineid, byptsf. If
df is an external routine, the effect of the call is to execute that routine on the actt
arguments given, if any, according to the rules of the language in which it is written.

There remains to cover the case in whd€ls a non-external non-once routine (with
a Routine_body beginning with the keywatd). Then the effect of the call is the effect
of the following sequence of steps.

D1 - If df has arguments, attach every formal argument to the value of the correspond
actual argument, applying the semantics of direct reattachment.

D2 « If df has any local entities, save the current values of these entities if anydfall to
has been started but not yet terminated; then initialize each local entity to the defe
value of its base type.

D3« If df is a function, initialize the predefined entResult again according to the
default initialization rules.

D4 « Execute the body aff. In this execution, evaluation of the ent@yrrentwill return
target_value the effect of an Unqualified_cali, whereu is neitherCurrent nor
Result is defined (recursively) as the effect of the qualified teadjet. u; and the

70

§21.3

21 Feature call

21.3 USES OF CALLS

* If the feature is an attribute or a function, the Call is syntactically an expression.

* If the feature is a procedure, the Call is an instruction.

21.6 FORM OF A CALL

Call
Parenthesized_qualifier
Call_chain

Ungualified_call

Actuals
Actual_list
Actual

Address

Address_mark

(> 1> | >

1>

L[> 11> | > | (>

1>

[Parenthesized qualifier] Call_chain
Parenthesized\(}"
{Unqualified_call " ...}*

Entity [Actuals]

“(" Actual_list)"
{Actual "," ...}
Expression | Address
"$" Address_mark

Feature_nameQurrent| Result

21.12 EXECUTING THE BODY

WALIDITY

VKCN|

To execute (or “run”) a system on a machine means to get the machine to apply a creation
instruction to the system’s root class.

Definition: current object

In all but trivial cases, the root’s creation procedure will create more objects and
execute more calls. This extremely simple semantic definition of system execution
has as its immediate consequence to yield a precise definition of the current object
and current routine. At any time during execution, the current object CO is the
object to which the latest non-completed routine call applies, and the current routine

cr is the feature of that call. They may be defined precisely as follows:

1+ At the start of the execution of a system, CO igtloe object (the instance of the
root class whose creation is the first act of system executiomrasdhe selected

creation procedure. (If the root class has no creation procedure, execution terminates

immediately.)

§20.14 RULES ON ASSIGNMENT ATTEMPT 69

BYHNTAR

L

WRLIOITY

VIRV

[semanTics

[semanTIcS

[semanTICS

Definition: dynamic type set, dynamic class set

The set of possible dynamic types for an entity or expressgcalled the dynamic
type set ofx. The set of base classes of these types is called the dynamic class
of x.

20.14 RULES ON ASSIGNMENT ATTEMPT

Assignment_attempt 2 Writable "?=" Expression

Assignment Attempt rule

An Assignment_attempt is valid if and only if the type of the target entity is a referenc
type.

The effect of an Assignment_attempt of sowread targex, of typeTX, is the following:

1+ |Ifyis attached to an object whose type conformBXothen the effect is that of a
direct reattachment gfto x, as given earlier in this chapter.

2+ |If yis void or attached to an object whose type does not confoiiiX, tihe effect
is to make the value ofvoid.

20.17 SEMANTICS OF EQUALITY

There are in fact two operators to consider here: equality = and inequalldpwever
only one semantic definition is needed, since the effectofy is defined in all cases to
be that of

not (x =y)

TYPE OF FIRST |Reference Expanded

TYPE OF SECOND

Reference [1] Reference equality [3] standard_equal
Expanded [2] standard_equal [4] standard_equal

68 §20.4

20 Reattaching entities

20.4 SYNTAX AND VALIDITY OF DIRECT REATTACHMENT

Assignment 8 Writable ":=" Expression

Assignment rule

An Assignment is valid if and only if its source expression conforms to its target entity. wscimmy:

VJAR

20.5 SEMANTICS OF DIRECT REATTACHMENT

SOURCE TYPE- |Reference Expanded | SEMANTICS

TARGET TYPE

Reference [1] Reference reattachmer[3] Clone

Expanded [2] Copy (will fail if source |[4] Copy

is void)

For the exception raised in case 2 if the valug of void, the Kernel Library class :
EXCEPTIONSnNtroduces the integer codeid_assigned_to_expanded RN

20.9 POLYMORPHISM

Definition: dynamic type

The dynamic type of an entity or expressig@at some instant of execution wien

is not void, is the type of the object to whighs attached. This should not be
confused with the “type” of (called itsstatic typaf there is any ambiguity), which

for an entity is the type with which it is declared, and for an expression is the type
deduced from the types of its constituents.

Definition: polymorphism

The ability to have more than one dynamic type is called polymorphism; an entity
or expression which has two or more possible dynamic types (that is to say, which
may become attached at run time to objects of two or more types) is itself a
polymorphic entity. Only entities or expressions of reference types may be
polymorphic.

§19.8 DEEP EQUALITY

67

SEMANTICS

3

Af TY does not conform td X, the result is false. Cases 4 to 6 assume Tiat
conforms toT X.

If TXis BOOLEAN CHARACTERINTEGER REAL DOUBLE or POINTER the
result is true if and only if OX and OY are the same value, after possible conversi
to the heavier type if OX and OY are different arithmetic types.

If OX and OY are special objects (strings or arrays), that is to say, sequences
values, the result is true if and only if the sequences have the same length, and e
field in one is (recursively) equal to the field at the same position in the other.

Otherwise OX and OY are standard complex objects, and conformah¥eat X
implies that for every field of OX there is a corresponding field in OY. Then tht
result is true if and only if every reference field of OX is attached to the same obje
as the corresponding field in OY, and every object field of OX, coming from a
expanded attribute imX's base class, is (recursively) equal to the correspondin
field in OY.

19.8 DEEP EQUALITY

Two referenceg andy are deep-equal if and only if they are either both void or attache:
to deep-equal objects.

Two objects OX and OY are deep-equal and only if they satisfy the following fou

conditions:

1+« OXandOY have the same exact type.

2+ The objects obtained by setting all the reference fields of OX and OY (if any) 1
void references are equal.

3+ For every void reference field of OX, the corresponding field of OY is void.

4+ For every non-void reference field of OX, attached to an object PX, th

corresponding field of QY is attached to an object PY, and it is possible (recursivel
to show, under the assumption that OX is deep-equal to OY, that PX is deep-eq
to PY.

66 §19.2

19 Duplicating and comparing objects

19.2 COPYING AN OBJECT

Assumecopyhas not been redefined and consider axcatbpy(y). As with any call, the :
targetx must be non-void; the first precondition clauseafystates thay must also be RN
non-void. Let OX and OY be the attached objects at the time of the call.

1« If OX and OY are bit sequences, the conformance rule on Bit_type requires OX to
be at least as long as OY. The call then copies onto OX the contents of OY, extended
with zeros on the left if OY is shorter than OX. Cases 2 to 4 assume that OX and OY
are not bit sequences.

2+ If the types of OX and OY are basic typ8OOLEAN CHARACTERINTEGER
REAL DOUBLE or POINTER, then OX is identical to OY or is a heavier type.
Then the call copies the value of OY onto OX, after conversion to the heavier type
if necessary.

3+ If OX and OY are special objects, that is to say sequences of values (strings or
arrays), the call copies the value of OY onto OX. The implementation must ensure
that whenever this occurs the size of OX is at least as large as the size of OY.

4+ In the remaining cases OX and OY are standard objects, made of zero or more
fields, and the second precondition clause implies that the type of QY is a
descendant of the type of OX; as a result, for every field of OX there is a
corresponding field in OY. Then the call copies onto every field of OX the
corresponding field of OY.

19.3 CLONING AN OBJECT

Here is the definition of the semantics of a cidhe(y):
1+ If the value ofy is void, the call returns a void value.

SEMANT ICS

2+ If the value ofy is attached to an object OY, the call returns a newly created objec.
of the same type as QY, initialized by applyiogpy to that object with OY as
source.

19.7 OBJECT EQUALITY

Here is the precise result that the standard versiequdl must return when applied to
two valuesx andy.

1+ If any one ofk andy is void, the result is true if the other is also void too, and false
otherwise. Cases 2 to 6 assume that both arguments are attached to respective
objects OX and OY of typeEX andTY.

2+ If OX and OY are bit sequences, the result is true if and only if the two sequences,
with the shorter one being extended with zeros on the left to match the length of the
longer one if necessary, are bit-by-bit identical. Cases 3 to 6 assume that OX and OY
are not bit sequences.

SEMANTICS

§18.13 DEFAULTINITIALIZATION VALUES 65

« ForBOOLEAN the boolean value false.
« ForCHARACTERthe null character.

* FOorINTEGER, REAlor DOUBLE: the integer, single precision or double precision
zero.

* ForPOINTER a null pointer.
» For a Bit_type of the forrBIT N: a sequence of N zeros.

64 §18.10

2+ Cis an effective class.

3+ Ifthe Type partis present, the type that it contains (whi€hésnforms to the type
of X, and is a reference type.

4+ |If Cdoes not have a Creators part, there is no Creation_call part.

5« If C has a Creators part, there is a Creation_call part, and the call would be
argument-valid if it appeared in the text@f

(o)}
.

If case 5 holds anilis the feature of the Creation_call, thkers available for
creation toX.

18.10 CREATION VALIDITY (SYSTEM-LEVEL)

A Creation instruction isystem-validif and only if it satisfies one of the following two
conditions:

1+ The creation type is explicit (in other words, the instruction begins ith . for TR

some typeT). VGCS
2+ The creation type is implicit (in other words, the instruction begins with !!...) and
every possible dynamic typefor x, with base clas€, satisfies conditions 1 to 6 of

the Creation Instructiontle {page\n{9g). In applying conditions 5 and 6, the
feature of the calff, must be replaced by its versionGn

A Creation instruction is valid if and only if it is both class-valid and system-valid.

18.11 CREATION SEMANTICS -1.rALT|L'|r|"|-'.
With the above validity rules, we can define the precise semantics of a Creatin\éGCI
instruction. Consider such an instruction with targeind creation typd. If T is a oot

reference type, the effect of executing the instruction is the following sequence of steg |

1+ If there is not enough memory available to create a new direct instahceigfer
an exception in the routine that executed the instruction. Steps 2 to 5 do not apply in
this case.

2+ Create a new direct instanceTdE.

3+ Assign a value to every field of the new instance: for a field corresponding to a
constant attribute, the value defined in the class text; for a field corresponding to a
variable attribute, the default value of the attribute’s type, according to the rules
given below.

4« |f the Creation instruction includes a Creation_call, that is to say an Unqualified_
call, execute that call on the resulting object.

5+« Attachx to the object.

18.13 DEFAULT INITIALIZATION VALUES

Consider a field of a newly created object, corresponding to an attribute éfTypehe :
base class of the object’'s type. The default initialization vaditefor the field is | SEMANTICS
determined as follows according to the natur&Bf

» For a reference type: a void reference.

§18.8 CREATION SYNTAX 63

BYHTHAR

L

ATALIOITY

VGCC

18 Creating objects

18.8 CREATION SYNTAX

1>

Creators creation {Creation_clausereation ...}*

1>

Creation_clause [Clients] [Header_comment]

Feature_list

Creation_clause rule

A Creation_clause appearing in the Creators part of a €lassvalid if and only if it
satisfies the following five conditions, the last four for every Feature_ideffiifierein
the clause’s Feature_list:

1+ Cis effective.

2+ fnameappears only once in the Feature_list.

3+ fnameis the final name of a procedure@flet cp be that procedure.
4+ cpis not a once routine.

5¢ If Cis expandedgp has no arguments, and no other Feature_identifier appears
the Feature_list.

Definition: creation procedure

>

Creation "I" [Type] "!" Writable [Creation_call]

1>

." Unqualified_call

Creation_call

Definition: creation Type

To discuss the validity and semantics of the Creation instruction it is useful |
introduce the notion of creation type of a Creation instruction. The creation type
the optional Type appearing in the instruction (between exclamation marks)
present; otherwise it is the base type of the target.

18.9 CREATION VALIDITY (CLASS-LEVEL)

Creation Instruction rule

Consider a Creation instruction appearing in a cldsdet x be the target of the
instruction,T its creation type, an@ the base class Gt

The instruction ixlass-validif and only if it satisfies the following conditions:

1« Tis not a Formal_generic_name (that is to say, a formal parameter of the clz
where the instruction appears).

62 §17.9

4« Current the predefined entity used to represent a reference to the current object (the
target of the latest not yet completed routine call).

Unique A unique | SYNTAX |

Entity rule

An occurrence of an entiyin the text of a clas€ (other than as feature of a qualified
call) is valid if and only if it satisfies one of the following conditions:

1+ eisthe final name of an attribute Gf

2A « The occurrence is in a Local_declarations, Routine_body, Postcondition or RescYEEN
part of a Routine text for a function, aads the Local entityResult

2B« The occurrence is in a Local_declarations, Routine_body or Rescue part of a
Routine text for a routing and the Local_declarations part fayontains an Entity
declaration_list including as part of its Identifier_list.

3+ The occurrence is in a Feature_declaration for a routinend the Formal
arguments part for contains an Entity_declaration_list includiegas part of its
Identifier_list.

WALIGITY

4+ ejsCurrent

§17.7 FIELDS OF COMPLEX OBJECTS 61

BEMANTICS

* ForBIT n, withn> 0: all the sequences ofbinary (zero or one) values (nonenif
= 0).

17.7 FIELDS OF COMPLEX OBJECTS

Definition: complex class, complex type, field

Every class other thad®OOLEAN CHARACTERINTEGER REAL DOUBLEand
POINTERIs said to be a complex class. Any type whose base class is complex
itself a complex type, and its instances are complex objects.

Consider a class typeC, of base clas€, and an attributa of classC, with TA
being the type o&. The possible values for the field corresponding to attridire

a direct instance of C depend on the nature ©A. There are three possible cases
for TA:

1+ Reference type. (This also covers the case of an anchored type, of tHi&déoxm
which has a class type as base type.)

2+ Expanded type.
3+ Formal generic parameter of cld3s

In case 1, the field corresponding to attribaiis a reference. That reference may
be void, or it may be attached to an instanc@Ad base type — not necessarily a
direct instance.

Definition: sub-object

In case 2, the field corresponding to attribaiie an instance of the expanded type
TA. In other words, the field is itself an object, called a sub-object of the enclosir
object. Depending on the precise naturelAf the sub-object may be of various
forms:

 TA may be a basic type, in which case the sub-object is a basic object of t
corresponding type; the figure shows fields of tfWEEGER DOUBLE and Bit_

type.

Definition: composite object
» If TAis a non-basic expanded type, the sub-object is itself a complex object. In ti
case the enclosing complex object is said to be composite.

17.9 EXPRESSIONS AND ENTITIES

Definition: entity
In a class text, four kinds of entity may appear:
1+ Final names of attributes of the class.
2+ Local entities of routines, including the predefined emiggultfor functions.

3+ Formal routine arguments.

60 §17.2

17 Objects, values and entities

17.2 OBJECTS

Definition: standard object, special object

There are two kinds of object, standard and special:

» A standard object is the direct result of a Creation instruction or clone operation
executed by the system.

» A special object is a sequence of values, all compatible with a given type. It may be
astring or anarray. In a string, the values are all characters; in an array, they are
either all references, or all direct instances of a single type.

17.4 INSTANCES OF A CLASS

Definition: instance of a class

An instance of a clasS is an instance of any typebased orC, and similarly for
direct instances.

17.5 INSTANCES AND DIRECT INSTANCES OF A TYPE

Definition: instances of a type
The instances of a typeX are the direct instances of any type conformingXo
Definition: direct instances of non-basic expanded types

Let TX be an expanded type which is neither one of the basic tBRROIKEAN
CHARACTERINTEGER REAL DOUBLE, POINTER nor a Bit_type. The direct
instances of X are the the direct instances of the base typxof

17.6 DIRECT INSTANCES OF BASIC TYPES

Direct instances of basic types

The direct instances of the basic types are the following.
» ForBOOLEAN the boolean values true and false.
 For CHARACTERany character.
» ForINTEGER all the integer values which may be representddt@ger_bitits.
» ForREAL all floating-point values which may be representedeal_bitsbits.

SEMANTICS

* For DOUBLE all the floating-point values which may be representeBDauble__
bits bits.

* For POINTER all possible feature addresses, for transmission to non-Eiffel
routines.

8§16.5 CONSTANT ATTRIBUTES WITH MANIFEST VALUES 59

SYHTAK

1

WRLIOITY

VQUI

[semanTics

16 Attributes

16.5 CONSTANT ATTRIBUTES WITH MANIFEST VALUES

A declaration of a featureintroducing a manifest constant is valid if and only if the
Manifest_constant used in the declaration matches the tymeclared fof in one of
the following ways:

* mis a Boolean_constant aiidds BOOLEAN
* mis a Character_constant afids CHARACTER

* mis an Integer_constant aiids INTEGER

mis a Real_constant addis REALor DOUBLE
* mis a Manifest_string and is STRING

* mis a Bit_constant consisting of exactly M bits for some positive integer Ml and
is BIT M for the same M.

16.6 UNIQUE ATTRIBUTES

A

Unique unique

A declaration of a featureintroducing a Unique constant is valid if and only if the type
T declared fof isSINTEGER

Unique Declaration rule

The value of an attribute declared as unique is a positive integer. If two unique attribu
are introduced in the same class, their values are different. Furthermore, unique attrib
declared as part of the same Feature_declaration are guaranteed to have consec
values, in the order given.

58 §15.9

A Retry instruction is valid if and only if it appears in a Rescue clause.

15.9 SEMANTICS OF EXCEPTION HANDLING AALIDITY

VXRT
Definition: rescue block

Any Internal routing of a clas<C has arescue blockrb, which is a Compound defined
as follows:

1+ Ifr has a Rescue clausb,is the Compound contained in that clause.

2+ If r has no Rescue clausb,is a Compound made of a single instruction: a call to
the version oflefault_rescuén C.

An exception triggered during an execution of a routiteads, if it is neither ignored nor
continued, to the following sequence of events.

[sEMANTICS

1+ Some or all of the remaining instructions are not executed.
2+ The rescue block of the routine is executed.

3+ Ifthe rescue block executes a Retry, the body of the routine is executed again. This
terminates processing of the current exception. Any new triggering of an exception
is a new occurrence, which will (recursively) be handled according to the present
semantics.

4+ |f the rescue block is executed to the end without executing a Retry, this terminates
the processing of the current exception and the current executigrcafising a
failure of that execution. If there is a calling routine, this failure triggers an
exception in the calling routine, which will be handled (recursively) according to the
same semantics. If there is no calling routimis, the root’s creation procedure; its
execution will terminate.

The definition mentions that it applies only deroutine which is
neither ignored nor continued. This corresponds to two facilities provided through
features of the Kernel Library cladssXCEPTIONS implementing the false alarm
response:

* You may specify that a certain typeexception must be altogether ignored.
* You may specify that a certain type of exception must cause execution of a
designated procedure and then continuation.

15.10 EXCEPTION CORRECTNESS

Definition: exception- correct

A routiner of a clas<C is exception-correctif and only if, for every branch of its
rescue block:

1+ If bends with a Retry:tfue} b {INV: Opre }
2+ If bdoes not end with a Retrytrge} b{INV:}
In this rule,INV¢ is the invariant of clasS andpre, is the precondition of.

§15.2 WHAT IS ANEXCEPTION? 57

15 EXxceptions

15.2 WHAT IS AN EXCEPTION?

Definitions: failure, exception

Under certain circumstances, the execution of a construct (such as an instructi
may be unable to terminate as you normally expect it to. The execution is then s
to result in a failure.

If a routine executes a component and that component fails, this will prevent t
routine’s execution from proceeding as planned; such an event is called
exception.

15.3 EXCEPTION HANDLING POLICY

Only three possibilities make sense for handling an exception:

» A favorable albeit unlikely case is one in which the exception was in fact nc
justified. This is called th&alse alarm.

* When writing the component, you may have anticipated the possibility of a
exception, and provided for an alternative way to fulfil the contract. Then th
execution will try that alternative. This case is callesumption.

* If you have no way of fulfilling the contract, then you should try to return the object
involved into an acceptable state, and signal your failure to the client. This is call
organized panic

Definition: recipient

Any execution of a software component is part of the execution of a call to a certe
routine, known as theurrent routine If the component’s execution fails, this will
trigger an exception in the current routine, which becomes the recipient of tl
exception. Depending on how the software has been written, the exception will
handled through one of the three techniques listed above.

15.8 SYNTAX AND VALIDITY OF THE EXCEPTION

CONSTRUCTS
Rescue 2 rescueCompound
Retry 2 retry

It is valid for a Routine to include a Rescue clause if and only if its Routine_body is
the Internal form.

56 §14.8

computation unchanged if the Boolean_expression of its Exit clause evaluates to false;
otherwise, it is the effect of executing the Compound clause, followed (recursively) by
the effect of executing the Loop_body again in the resulting state.

14.8 THE DEBUG INSTRUCTION

Debug debug[Debug_keys] Compounend | SYNTAX |

"(" Debug_key list)"
{Debug_key "," ...}

Manifest_string

Debug_keys
Debug_key list

> 1> 1> Il

Debug_key

ha
SEMANTICS

The effect of a Debug instruction depends on the mode that has been chosen for
enclosing class:

« If the debugoption is on generally, or if the instruction includes a Debug_key_list
and the option is on for at least one Debug_key in the list, the effect of the Debug
instruction is the same as that of its Compound.

+ Otherwise the effect is that of a Null instruction.

§14.7 LOOP

55

SEMANTICS

BYNTAR

1

BEMANTICS

Character_interval 2 Character_constant . Character |

constant

Definition: unfolded form of a multi—branch-

To discuss the constraints and the semantics, it is convenient to consider
unfolded form of a Multi_branch. To obtain it, just replace any integer or charact
Interval, in the Choices of a When_part, by a Choices list made up of all constat
between the interval’'s bounds, or empty if the second bound is smaller than the fi
Integer order is used for an Integer_interval, and character code order for
Character_interval.

Multi_branch rule

A Multi_branch instruction is valid if and only if its unfolded form satisfies the following
conditions.

1+ The inspect expression is of tyi¢TEGERor CHARACTER

2+ Any inspect constant (any value in one of the Choices parts) is a Constant of 1
same type as the inspect expression.

3+ Any two non-Unique inspect constants have different values.
4+ Any two Unique inspect constants have different names.

5« If any inspect constant is Unique, then every other inspect constant in tl
instruction is either Unique or has a negative or zero value.

6« All Unigue inspect constants, if any, have the same class of origin (the enclosi
class or a proper ancestor).

The effect of executing a Multi_branch instruction is defined as the effect of executing
unfolded form, as follows. The value of the inspect expression is computed. Because
the above validity constraint, that value may be equal to at most one of the insp
constants. If there is indeed one such constant, the effect of the Multi_branch is tha
the Compound appearing after titreen in the When_part of the matching inspect

constant. If there is no such constant:

1. If the Else_part is present, the effect of the Compound is that of the Compou
appearing in the Else_part.

2+ Otherwise an exception is triggered and the current routine execution fails.

14.7 LOOP
Initialization 2 from Compound
Loop_body 2 Exit loop Compound
Exit 2 until Boolean_expression

The effect of a Loop is the effect of executing its Initialization followed by the effect o
executing its Loop_body. The effect of executing an Initialization clause is the effect
executing its Compound. The effect of executing a Loop_body is to leave the state of

54 §14.5

Definition: prevail immediately

If the value ofconditiory is true when the instruction is executed, then the
Conditional is said to prevail immediately.

Finally, we may consider that every Conditional has an Else_part if we understand
an empty Else_part to stand for one with an empty Compound.

With these conventions, the effect of a Conditional may be defined as follows. If th [[oruanmies
Conditional prevails immediately, then its effect is that of its compppad, as defined . |

above. Otherwise:

 If it has a secondary part, the effect of the entire Conditional is (recursively) the
effect of the secondary part.

* If it has no secondary part, its effect is that of the (possibly empty) Compound in its
Else part.

14.5 MULTI-BRANCH CHOICE

Definition: inspect expression

A Multi_branch instruction contains a Expression, called the inspect expression,
appearing after the keyworidispect The inspect expressiomgst_inputin the
example, may only be of tygBITEGERor, as hereCHARACTERIt includes one

or more When_part, each of which indicates a list of one or more Choice, separated
by commas, and a Compound to be executed when the value of the Expression is
one of the given Choice values.

Definition: inspect constant

Every Choice specifies one or more values, called inspect constants. More
precisely, a Choice is either a single constant (Manifest_constant or constant
attribute) or an interval of consecutive constants yielding all the interval’'s elements
as inspect constants. If present, the instruction’s optional Else part is executed
when the inspect expression is not equal to any of the inspect constants.

Multi_branch 4 inspectExpression

[When_part_list] [Else_pargénd
When_part_list 2 when{When_partwhen...}*
When_part 4 Choicesthen Compound
Choices 2 {Choice"," ..}
Choice 2 Constant | Interval
Interval 2 Integer_interval | Character_interval
Integer_interval 4 Integer_constant."." Integer_constant

§14.2 COMPOUND

53

| SYHTAK

[semanTics

SYHTAK

L

[semanTics

14 Control structures

14.2 COMPOUND

>

Compound = {Instruction ";" ...}

The effect of executing a Compound may be defined as follows.

» If the Compound has zero instructions, the effect is to leave the state of t
computation unchanged.

« If the Compound has one or more instructions, its effect is that of executing the fil
instruction of the Compound and then (recursively) to execute the Compout
obtained by removing the first instruction.

14.3 NULL INSTRUCTION

Specimens of the null instruction are empty.

The effect of the null instruction is to leave the state of the computation unchange

14.4 CONDITIONAL

Conditional 8 if Then_part_list [Else_paré&nd
Then_part_list 2 {Then_partelseif...}*

Then_part 4 Boolean_expressiotnen Compound
Else part 4 elseCompound

To define precisely the semantics of this construct, a few auxiliary notions a
useful. As the syntactical specification shows, a Conditional begins with

if condition, then compoung

wherecondition, is a boolean expression acampoung is a Compound.

Definition: secondary part

The remaining part may optionally begin wétlseif If so, replacing the firglseifby
if would transform the remaining part into a new, syntactically correct, Conditiona
such an instruction is called the secondary part of the enclosing Conditional.

The final part, also optional, is of the foeisecompoung.

52 §13.11

13.11 BIT TYPES

The possible direct conformance cases involving a Bit_type are the following for any
positive integerN andP:

1+ BIT Nconforms directly tANY
2+ BIT Nconforms directly t@IT PforN< P.

Other than implied by these rules, no type conforms directly to a Bit_type, and a Bit_type
conforms directly to no type.

WALIGITY

VNCB

§13.7 FORMAL GENERIC PARAMETERS 51

13.7 FORMAL GENERIC PARAMETERS

Let G be a formal generic parameter of a class, which in the class may be used as a
of the Formal_generic_name category. No type conforms directy. th G is not
constrained, it conforms directly to the typBlY (based on the corresponding universal
class) and to no other type.Gfis constrained bZ T, G conforms directly taCT and to
MRIGEE: no other type.

13.8 ANCHORED TYPES

In a classC, typelike Current conforms directly to its base tygel, whereCT is C
followed by its Formal_generic_list, if any, with any Constraint removed.

ALY Typelike anchor whereanchoris a feature o€ or a formal argument of a routine
VNCH of C, conforms directly to the type ahchorin C.

An anchored type conforms directly to no type other than implied by these rule
No type conforms directly to an anchored type.

13.9 EXPRESSION CONFORMANCE

An expressiorv of typeVT conforms to an expressidrof type TT if and only if they
satisfy any one of the following four conditions.

1« VTconforms tolT.
M 2+ TTislike v (vin this case must be an entity).
3+« VTandTT are both of the forrike x for the samex.

4+ TTislike xwherex is a formal argument to a routinev is an actual argument in a
call tor, andVT conforms to the type of the actual argument correspondirgnto
the call.

5¢ vis a call to some functiohof typelike x wherex is a formal argument df and
the type of the actual argument correspondingitothe call conforms ta T.

13.10 EXPANDED TYPES

Definition: heavier arithmetic type

Any arithmetic type conforms to heavier ones, whef@UBLE is heavier than
REALandINTEGER andREALIis heavier thatNTEGER

Let T be an expanded type other than a Bit_type. A tym®nforms directly ta if and
only if they satisfy any one of the following three conditions:

1+« Tis of the formexpandedBT, andU isBT.

VNCE 2+ TisREALandU isINTEGER

3+ TisDOUBLEandU isREALor INTEGER
In case IT also conforms directly to.

An expanded type conforms directly to no type other than implied by this rule ar
the rules of 13.5 and 13.6.

50 §13.3

13 Conformance

13.3 SIGNATURE CONFORMANCE

A signaturet = (<Bq, ...,B>, <5) conforms to a signatuss= (<Aq, ...,A>, <R>) if and
only if it satisfies the following conditions:

1+ Each of the two sequence componentstafs the same number of elements as the =~ ¥
corresponding component af Vil

2+ Every typeT; in each of the two sequence componentd obnforms to the
corresponding typ& in the corresponding componentsof

13.4 DIRECT AND INDIRECT CONFORMANCE

Let T andV be two typesV conforms to T if and only if one of the following holds:
1« VandT are identical.

2+ 'V conforms directly td.
VNCC

3+ VIisNONEandT is a reference type.

4+ VisB[Yy,..Y,] for some generic clags TisB[Xy,... X], and every one of the;Y
conforms (recursively) to the corresponding X

5« T is a reference type and, for some typeV conforms toU and U conforms
(recursively) toT.

13.5 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE

Let CT be a Class_type of base cl&sandBT be a reference type whose base diass
not genericCT conforms directly t@BT if and only if the Inheritance clause Gflists B Q
in one or more of its Parent items.

13.6 GENERICALLY DERIVED REFERENCE TYPES VNCN

Let BT be a generically derived reference type of baseByp€,... X for some n>=1,

where the formal generic parameterBadreG,,... G,. Let CT be a Class_type of base °
classC different fromB. To determine whethe€T conforms directly taBT, define the
substitutionoas follows:

- . . - . . . VNCG
 If CTis non-genericg is the identity substitution.
« If CT is a a generically derived type, of the fo@n[Y3,... Y,J, and classC is
declared with formal generic parameters.HH,, thenc applied to any of théi
(for 1<i<m)isYY;, ando applied to any other element is the element itself.

Then CT conforms directly toBT if and only if the Inheritance clause @f lists
B [Z,,... Z,] as one of its Parent items and, for evesuch thatt<—<— n,
applying substitutioro to Z; yields X;.

§12.15 ANCHORED TYPES 49

[semanTics

The base typ8T of an anchored typkke anchorappearing in a clags is determined
as follows:

Definition: base class, base type (anchored)

1+ If anchoris the final name of some feature@fthenBT is the declared type of that
feature inC.

2+ If anchoris a formal routine argument, théT is the type declared for that
argument in the Formal_arguments list.

3+ If anchoris Current thenBT is C followed by its Formal_generics, if any, with any
Constraint removed.

48 §12.12

12.12 RULES ON EXPANDED TYPES

Definition: expanded type, reference type
A typeT is expanded if and only if one of the following conditions holds:
1+ Tis aClass_type whose base cl@dgs an expanded class.

2+ Tis of the formexpandedCT. (As noted, it is redundant but not erroneous for the
base class o€ T to be an expanded class.)

3+ Tis of the formBIT M for some non-negative integer M.

T is a reference type if it is not a Formal _generic_name and none of the above
condition applies.

Expanded Type rule

It is valid to use an expanded type of base dlassthe text of a clasB if and only if it Q
satisfies the following two conditions: "'-’”-T|E'"‘f-
1+ Cisnota deferred class. VTEC

2+ Ceither has no Creators part, or has a Creators part containing exactly one creation
procedure, with no argument, availableBtéor creation.

Any entity declared of an expanded type has run-time values which are instances of the
corresponding base type. | SEMANTICS

12.14 BIT TYPES

A Bit_type declaration is valid if and only if its Constant is of tylN€ EGER and has a
positive value. AALIDITY

VTBT

The possible values of an entity declare@BsN for someN are bit sequences of exactly
N bits.

[sEmANTICS

12.15 ANCHORED TYPES

Definition: anchored type, anchor
An Anchored type is of the form
like anchor
whereanchoris called the anchor of the type.

An anchored type of the forfike anchorappearing in a clags is valid if and only if
one of the following holds:

1+ anchoris the final name of an attribute or function@fwhose declared type is a
non-Anchored reference type. VTAT

2+ The type appears in the text of a routired C, andanchoris a formal argument of
r, whose declared type is a non-Anchored reference type.

3« anchoris the reserved wor@urrent

§12.8 CONSTRAINED GENERICITY 47

WRLIOITY

VTUG

[semanTics

[sEMANTICS

VTCG

[semanTics

Definition: generic class, generic derivation, non-generic

Any class declared with a non-empty Formal_generics part (constrained or not)
said to be a generic class. A generic class does not describe a type but a temg
for a set of possible types. To derive an actual type from this template, you mt
provide an Actual_generics list, whose elements are themselves types. The resu
called a generic derivation.

Unconstrained Genericity rule

Let CT be a Class_type having a non-empty Actual_generics part, whose basgislass
not a constrained generic clag¥l is valid if and only ifC satisfies the following two
conditions:

1« Cis ageneric class.

2+ The number of Type components@Ts Actual_generics list is the same as the
number of Formal_generic parameters in the Formal_generic_G& déclaration.

A generically derived type is expanded if its base class is an expanded class; otherwi:
Is a reference type.

12.8 CONSTRAINED GENERICITY

The effect of a Constraint, if present, is to restrict allowable actual generic parameters
types that conform to the Class_type given.

Constrained Genericity rule

Let C be a constrained generic class. A Class_Gpd&avingC as base class is valid if
and only ifCT satisfies the two conditions of the Unconstrained Genericity Yile G,

page\n{QY) and, in addition:

3+ For any Formal_generic parameter in the declarati@having a constraint of the
form —>D, the corresponding Type in the Actual_generics li€bEonforms tdD.

12.9 USING FORMAL GENERIC PARAMETERS AS TYPES

Definition: base class, base type (constrained generic)
We consider the base type of a constrained generic parameter to be its constrait
type, with the associated base class.

Definition: base class, base type (unconstrained generic)

ANY serves as both the base type and the base class of any unconstrained Fort
generic_name.

12.11 CLASS TYPES EXPANDED

If Tis avalid Class_type, generically derived or mapandedT is a valid Class_type
expanded, and the possible values for entities of that type are instafices of

46

§12.4

12 Types

12.4 HOW TO DECLARE A TYPE

Type

Class_type
Actual_generics
Type_list
Class_type_expanded
Bit_type

Anchored

Anchor

>3

L[> 11> 1 > | [> > I [> | [

Class_type |
Class_type_expanded |
Formal_generic_name |
Anchored |

Bit_type
Class_nameActual_generick
"I" Type_list "]"

{Type "," ...}
expandedClass_type
BIT Constant

like Anchor

Identifier |Current

12.5 BASE CLASS, BASE TYPE

Class Type rule

An IdentifierCC is valid as the Class_name part of a Class_type if and only if it is the

name of a class in the surrounding universe.

12.7 UNCONSTRAINED GENERICITY

Definition: base class, base type (class Type)

STYNTAR

0

WALIDITY

VTCT

The base class of a generically derived type is the class used to derive it by
providing actual generic parameters.

Definition: constrained, unconstrained generic

The syntax for Class_declaration includes an optional Constraint part after every

formal generic parameter. If present, this part makes the parameter constrained; if
not, the parameter is unconstrained. A generic class is constrained if it has at least
one constrained parameter, unconstrained otherwise.

§11.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT 45

2+ If the Repeated Inheritance rule implies thatill be replicated inD andf is
potentially ambiguous, then the Select subclause of exactly one of the Parent p:
of D lists the corresponding versionfolunder its finaD name.

Select Subclause rule

A Select subclause appearing in the Parent part for aRlesa clasdD is valid if and
only if, for every Feature nanieamein its Feature_listhameis the final name iD of

a feature that has two or more potential versios, iandfnameappears only once in the
Feature_list.

VMSS

44 §11.12

3+ If aclass inherits two features as effective from different parents and they have the
same name, the class must also (except under sharing for repeated inheritance)
remove the name clash through renaming.

11.12 VERSIONS OF A FEATURE

Definition: potential version

Letf be a feature of a clagsandD a descendant &. A potential version ofin D
is any inherited feature @ which is either:

f itself.

A feature resulting (recursively) from a redeclaration of a potential versibn of

(Recursively) a potential version of a feature of wHitha redeclaration.

A feature resulting (recursively) from a generic derivatioA.of

Definition: version

Letf be a feature of a clagsandD a descendant &. The version of in D is the
featuredf defined as follows:

1+ If D has only one potential versionfothendf is that feature.

2+ If D has two or more potential versionsfpthe Repeated Inheritance Consistency
constraint, seen below, states that exactly one of them must appear, underits final
name, as part of a Select claus®irthendf is that feature.

Definition: potentially ambiguous

Let D be a repeated descendant of a clas® featuref of A is potentially
ambiguous irD if and only if one of the following two conditions holds:

1+« fis an attribute.

2+ D has two or more potential versionsfof

11.13 THE REPEATED INHERITANCE CONSISTENCY
CONSTRAINT

SYNTAR

Select 4 selectFeature_list

L

It is valid for a clas® to be a repeated descendant of a chagfisand only if D

satisfies the following two conditions for every feathiod A:

1+ |If the Repeated Inheritance rule implies thatill be shared inD, then all the g

inherited versions dfare the same feature. VMRC

§11.10 NAME CLASHES 43

ATALIOITY

VMFEN

11.10 NAME CLASHES

Definition: name clash

A name clash occurs for a certain feature ndmaenein a clas<C if, for two different
parentsA andB of C, bothA andB have a feature of nanfieame

11.11 THE INHERITED FEATURES OF A CLASS

Definition: inherited features

Let D be a class. The lighheritedof inherited features d is obtained as follows. Let
precursorsbe the list obtained by concatenating the lists of features of every pakznt of
this list may contain duplicates in the case of repeated inheritance.iflffeatted is
obtained fronprecursorsas follows:

1« Inlistprecursorsfor any set of two or more elements representing features that a
repeatedly inherited iD under the same name, so that the Repeated Inheritance rL
yields sharing, keep only one of these elements. The Repeated Inheritar
Consistency constraint (sharing case) indicates that these elements must
represent the same feature, so that it does not matter which one is kept.

2+ For every featuré in the resulting list, ifD undefined, replacef by a deferred
feature with the same signature and specification.

3+ Inthe resulting list, for any set of deferred features with the same final ndne in
keep only one of these features, with assertions joined as per the Join Semantics |
(Keep the signature, which the Join rule requires to be the same for all the featu
involved.)

4+ In the resulting list, remove any deferred feature such that there is an effect
feature with the same final name in the list. (This is the case in which a féatur
inherited as effective effects one or more deferred features: of the whole group, o
f remains.)

5¢ Let merged_featurebe the resulting list. All its elements have different feature
names; they are the inherited featuredDoin their parent form. From this list,
produce a new one as follows: for any feature wilctedeclares (by redefinition
or effecting), replace the feature by the result of the redeclaration; keep any ott
feature as it is imerged_features

6+ The resultis the lishheritedof inherited features db.
Feature Name rule

It is valid for a clas< to introduce a feature with the Feature ndname or to inherit
a feature under the final narframe if and only if no other feature & has that same
name.

1+ A class may not introduce two different features, both deferred or both effectiv
with the same name.

2+ If aclass introduces a feature with the same name as a feature it inherits in effec
form, it must rename the inherited version.

42 §11.2

11 Repeated inheritance

11.2 CASES OF REPEATED INHERITANCE

Definition: repeated inheritance, ancestor, descendant

Repeated inheritance occurs whenever (as a result of multiple inheritance) two or
more of the ancestors of a cld3shave a common pareAt D is then called a
repeated descendantAfandA a repeated ancestor Df

Definition: direct repeated inheritance

The simplest case, called direct repeated inheritance, corresponds to the following
scheme (wher® is a “repeated heir” oA):

classD inherit
Arename... redefine... end
Arename...redefine... end

... Rest of class omitted ...

Definition: indirect repeated inheritance

The second case, indirect repeated inheritance, arises when one pdeist af
proper descendant 8f and one or more other parents are descendaAty8bme
of the paths may be direct.)

11.3 SHARING AND REPLICATION

SERANTICS

Repeated Inheritance rule

Let D be a class and;, ... B,, (n = 2) be parents dd having a common ancestar Let
f1, ...f, be features of these respective parents, all having as their seed the samé feature
of A. Then:

1+« Any subset of these features inheritedbyinder the same final name yields a
single feature obD.

2+ Any two of these features inherited under a different name yield two featudes of

Definition: shared, replicated

Features will be said to be shared if case 1 of the Repeated Inheritance rule applies,
and replicated if case 2 applies.

§10.23 RULES ON JOINING FEATURES 41

[semanTIcS

Join Semantics rule

Joining deferred features with the same final name yields a non-obsolete deferred fea
defined as follows:

1+ Its name is the final name of all its precursors.

2+ Its signature is the precursors’ signature, which the Join rule indicates must be
same for all precursors after possible redeclaration.

3+ Its precondition is ther of all the precursors’ preconditions.

4« |ts postcondition is thand of all the precursors’ postconditions.

5+ Its Header_comment is the concatenation of those of all precursors.
6+ Itis not obsolete (even if some of the precursors are obsolete).

40 §10.23

Redeclaration rule

Let C be a class ang a feature ofC. It is valid forg to be a redeclaration of a featire @
inherited from a parer of C if and only if the following conditions are satisfied. VALTITY:
1+ No effective feature of other tharf andg has the same final name. VDRD
2+ The signature af conforms to the signature bf

3+ If gisaroutine, its Precondition, if any, begins wiuire else(not justrequire),
and its Postcondition, if any, begins weéhsure then(not justensure).

4+ |fthe redeclaration is a redefinition (rather than an effecting) the Redefine subclause
of the Parent part fd lists the final name dfin its Feature_list.

5¢ If fisinherited as effective, thenis also effective.

6+ If fis an attributeg is an attributef andg are both variable, and their types are
either both expanded or both non-expanded.

7+ If either one of andg is an External routine, so is the other.

Definition: declared type

Any feature or entity of a clagdhas adeclared type as follows:

» For a feature which is immediate@or redeclared i€, dtis the type given by the
declaration or redeclaration.

» For an inherited feature which is not redeclare@,idt is (recursively) the declared
type of its precursors in the corresponding parents.

» For the predefined entityurrent, dt is C with its formal generic parameters if any.

* For the predefined entitiResult appearing in a functiorgt is the return type
declared for the function.

* For any other entitg, dtis the type used in the declarationeof

Definition: type of a feature

In this book, the “type” of a feature or entity, without further qualification, always
means its declared type (rather than its base type).

10.23 RULES ON JOINING FEATURES

Definition: precursor (joined features)

A precursor of an inherited feature is a version of the feature in the parent from
which it is inherited. Without the join mechanism there was just one precursor; but
a feature which results from the join of two or more deferred features will have all
of them as precursors.

Join rule
.) ARLIDITY
It is valid for a clas€ to inherit two different features as deferred under the same final |

name if and only if, after possible redeclaratioi€jrthey have identical signatures. VDJR

§10.21 ORIGIN AND SEED 39

SEMANTICS

1+« fis introduced inC as an attribute or a routine whose Routine_body is of the
Effective form (that is to say, not the keywateferred but beginning witldo, once
or external).

2+ fis an inherited feature, coming from a parBnof C where it is (recursively)
effective, andC does not undefine it.

3+ Another feature ofC with the same final name is (recursively) effective. That
feature is then said &ffectf in C.

A feature ofC is adeferred feature of C if and only if it is not an effective feature
of C.

Condition 3 defines the effecting case: an effective feature, which has the same fi
name as one or more deferred features, serves as effecting for all of them.

Definition: deferred, effective class

A class isdeferred if it has at least one deferred feature. kffective otherwise.

10.21 ORIGIN AND SEED

Definition: origin, seed

Every feature of a class has a seed, which is a feature, and an origin, which is a clas
defined as follows.

1+ Anyimmediate feature @ (in other words, any feature introduceddmather than
inherited) is its own seed, and Hass its origin.

2+ An inherited feature ofC with two or more precursors, all of which have
(recursively) the same segdalso has as its seed. (This is the case of sharing undet
repeated inheritance.)

3+ If Cjoins a set of inherited deferred features, yielding (as explained above) a sin
feature ofC to which case 2 does not apply, that feature is its own seed and its oric
is C.

4+ Any feature ofC to which none of the previous cases applies is inherited, and he
exactly one precursor; then its seed and origin are (recursively) the seed and ori
of that precursor.

10.22 REDECLARATION RULES

Definition: redeclaration, redefinition, effecting

A classC redeclares an inherited featuré if and only if one of the following two
conditions holds:

» C contains a Feature_declaration for a featweth the same final name s

» C inheritsf as deferred, and inherits as effective another fegtuvgh the same
final name a$.

A redefinition is a redeclaration which is not an effecting.

38 §10.17

10.17 THE JOIN MECHANISM

If C inherits and joins two or more deferred features, the net result s if it had :
inherited a single deferred feature. In the absence of further actiorCirdimat feature | BEMANT IC5
remains deferred. Of coursé,may also provide an effective declaration for the feature,

killing several abstract birds with one concrete stone by using a single redeclaration ..

effect several features inherited as deferred.

10.19 REDEFINITION AND UNDEFINITION RULES

redefine Feature_list | SYNTAX |

undefine Feature_list

Redefine

1> 1>

Undefine

Redefine Subclause rule

Consider a clas€ with a parentB. If a Parent part foB in C contains a Redefine
subclause, that clause is valid if and only if every Feature_ideritiiarethat it lists (in
its Feature_list) satisfies the following conditions: AVALIDITY:

1+ fnameis the final name i€ of a feature inherited frora. VDRS
2+ That feature was not frozen, and was not a constant attribute.
3+ fnameappears only once in the Feature_list.

4+ The Features part @fcontainsoneFeature declaration for
fname which is a valid redeclaration, but not an effecting, of the original feature.

The effect of redefining a feature in a class is that any use of the feature in the class (its
clients or (barring further redefinitions) its proper descendants will refer to the redefine || SEMANTICS
version rather than the original. |

Undefine Subclause rule

Consider a clas€ that inherits from a clas€3. If a Parent part foB in C contains an
Undefine subclause, that clause is valid if and only if, for every Feature_idengime
that it lists (in its Feature_list): VALIITY

1+ fnameis the final name i of a feature inherited fror. VDUS
2+ That feature was not frozen, and was not an attribute.

3+ That feature was effective B

4+ fnameappears only once in the Feature_list.

10.20 DEFERRED AND EFFECTIVE FEATURES AND CLASSES

Definition: effective feature, deferred feature, effecting

A featuref of a clas<C is said to be apffective featureof C if and only if any of
the following conditions holds.

§10.2 REDECLARING INHERITED FEATURES: WHY AND HOW 37

[semanTics

[semanTics

[SEMANTICS

10 Feature adaptation

10.2 REDECLARING INHERITED FEATURES: WHY AND HOW

Definition: redeclaration

A class that contains a redefinition or effecting of an inherited feature will be sa
to redeclare that feature.

10.6 THE REDEFINITION CLAUSE

Definition: precursor

If a class inherits a feature from a parent, either keeping the feature unchangec
redefining it, the parent’s version of the feature is called the precursor of the featul

10.15 REDECLARATION AND ASSERTIONS

Consider a routine redeclaration andded;, ... pre, be the precursors’ preconditions and
posy, ..., post, be the precursors’ postconditions. Assume that new assertion clauses
present, of the form:

require elsealternative_precondition
ensure thenextra_postcondition
Then the redeclared routine will be considered to have the precondition and postcondit
alternative_preconditiomr elsepre; or else... or elsepre,
extra_postconditiomnd then post and then... and then post,

If, in a routine redeclaration, the Precondition part is absent, the redeclared routine
considered to havéalse as itsalternative_preconditionif the Postcondition part is
absent, the redeclared routine is considered to hawe as itsextra_postcondition
Because of the rules of boolean algebra, the absence of one of these assertions mear
the corresponding precursor assertion is kept as it was. (Or-ing a boolean vafaésejith
or and-ing it withtrue, does not change the condition.)

For a declaration of an immediate feature of a classetigre elseform of Precondition
clause has the same meaning as if it were introduced bequste, and theensure then
form of Postcondition clause has the same meaning as if it were introduced by j
ensure

10.16 UNDEFINING A FEATURE

Definition: inherited as effective, as deferred

In the rest of this discussion, an inherited feature is said to be inherited as effect
if it has at least one effective precursor and the corresponding Parent part does
undefine it. Otherwise the feature is inherited as deferred.

36 §9.16

9.16 CORRECTNES S OF A CLASS

Definition: correctness (class)

A class iscorrect if and only if it is consistent and every routine of the class is
check-correct, loop-correct and exception-correct.

9.17 SEMANTICS OF ASSERTIONS

For a correct system, assertions, in all cases, will have no effect on the semantics
system execution (except through possible side effects of the functions called
assertions). For an incorrect system, the effect depends on compilation or execut
options. Various options of the environment will make it possible to evaluate assertions.
If an assertion evaluates to true, it has no further effect on the outcome of the
computation. If it evaluates to false, it will trigger an exception, disrupting the normal
flow of computation, as discussed in the chapter on exception handling.

[semantics

An assertion violation detected as a result of enabling assertion monitoring at one of f
above levels triggers an exception. An exception will also result, atlegebr higher,
if a loop iteration fails to decrease the variant or gives it a negative value.

[semanTics

Here is the rule for determining the recipient of an exception resulting from an assertinn
violation: | BEMANT ICS

1+ For postconditions, class invariants, loop invariants, variants and Chec
instructions, the recipient is the routine whose text contains the violated assertion or
variant.

2+ For a violated precondition, the recipient is the calling routine. In this case no
component of the routine’s body is executed; the routine fails immediately, not
performing any of its normal actions, and triggering an exception in the caller.

§9.13 CHECK INSTRUCTIONS 35

In this rule INV¢ is the invariant o€ and, for any routins, pregis the precondition
of s, post its postcondition, andog its body.

9.13 CHECK INSTRUCTIONS

Cswrax | Check 4 checkAssertionend

Definition: check-correct

An effective routine is check-correctif, for every Check instruction in r, any
execution ofc (as part of an execution of satisfies all its assertions.

9.14 LOOP INVARIANTS AND VARIANTS

sWNTAK | Variant 2 variant [Tag_mark] Expression

A Variant is valid if and only if its Expression is of tyf¢TEGER

VAVE

Definition: loop-correct

A routine isloop-correct if every loop it contains satisfies the following four
conditions:

1« {true} INIT {INV}

2+ {true} INIT {VAR >=0}

3+ {INVand then notEXIT} BODY{INV}

4+ {INV and then notEXIT and then (VAR =V} BODY{0< VAR <V}

wherelNV is the loop’s invariantyAR its variant,INIT its Initialization, EXIT its
Exit condition, andBODY its Loop_bodly.

34 §9.9

Definition: availability of an assertion clause

An Assertion_clausa of a routine Precondition or Postconditioraisilable to a
classB if and only if all the entities involved ia are available td, with the
convention that formal arguments adRdsultare available to all classes.

9.9 OLD EXPRESSION

Old 2 old Expression | snTAx |

An Old expression of the forwld e, wheree is an expression of typEE, is valid
if and only if it satisfies the following two conditions:

1+ It appears in a Postcondition clause of a Routine —

2+ Transforming into a function with result typ&E (by adding a result type ifis vAoL

procedure, or changing its result type if it is already a function) and replacing its
entire Routine part bglo Result.= eend would yield a valid routine.

The value of an Old expressioid eis defined only at the end of the execution of a call -
to r, just before the call returns; it is the result that would have been produced || SEMANTICS
evaluatinge just before the call's execution began.

9.11 CLASS INVARIANTS

Definition: invariant of a class

The invariant of a clasS is an assertion obtained by concatenating the following
assertions (omitting any one which is absent or empty):

1+ The invariants of all parents (determined recursively through the present rule), in
the order of the corresponding Parent clauses.

2+ The postconditions of any inherited functions whicliedefines as an attribute,
with every occurrence dResultreplaced by the attribute’s final name. (If there are
two or more such redefinitions, include them in the order in which their new
declarations appear @.)

3+ The Assertion irC’s own Invariant clause, if any.

9.12 CONSISTENCY OF A CLASS

Definition: consistency
A classC is consistentif and only if it satisfies the following two conditions:
1+ For every creation procedupeof C: {pre,} do, {INVc L post}

2+ For every routine of C exported generally or selectively:
{pre, OINV:} do, {post O INV}

§9.5 FORM OF ASSERTIONS 33

BEMANTICS

ATRLIDITY

VAPE

9 Correctness

9.5 FORM OF ASSERTIONS

Precondition 8 require [elsg Assertion

Postcondition 2 ensure [then] Assertion

Invariant 2 invariant Assertion

Assertion 8 [{Assertion_clause ;" ...}

Assertion_clause 8 [Tag_mark]
Unlabeled_assertion_clause

Unlabeled_assertion_ 2 Boolean_expression | Comment

clause

Tag_mark 2 Tag""

Tag 8 |dentifier

In an Assertion, the semicolon separating each Assertion from the next has the s:
semantics as thend theninfix boolean operator. This means that the order of the clause
may be meaningful:

1« The value of an Assertion is true if and only if every Assertion_clause in th
Assertion has value true.

2+ If an Assertion_clause has value false, the whole Assertion in which it appears |
value false, even if the value of a subsequent clause is not defined.

9.7 THE SPECIFICATION OF A ROUTINE

Definition: specification, subspecification

Let pre and post be the precondition and postcondition of a routioet. The
specification ofout is the pair of assertiongre, post.

A specification pre', post'>is said to be a subspecification girg, post>if and
only if pre implies pre' and post' implies post Here “implies” is boolean
implication.

9.8 CONSTRAINTS ON ROUTINE ASSERTIONS

A Precondition of a routineof a clas<C is valid if and only if every feature whose final
name appears in any Assertion_clause is available to every class ta wharailable.

32 §8.9

8.9 TYPES OF INSTRUCTIONS

Instruction 4 cCreation |

call |

Assignment |

Assignment_attempt |
Conditional | Multi_branch | Loop |
Debug | Check | Retry

§8.6 ROUTINE BODY 31

BEMANTICS

BYHTHAR

L

VRLE

2+ Inthe other cases (where the Routine_body is External or Deferred), there is neit
a Local_declarations part nor a Rescue part.

8.6 ROUTINE BODY

Routine_body & Effective | Deferred
Effective 2 Internal | External
Internal 2 Routine_mark Compound
Routine_mark 2 do|once

Deferred 2 deferred

The introductory keywordslo or once of an Internal body correspond to different
semantics for calls to the routine:

1+ For ado body, as indicated above, the initialization and body
are executed anew on each call.

2+ If routine o of classC has aonce body © is then called a “once routine”), the
initialization and body ob are executed only for the first call doapplied to an
instance ofC during any given session. For every subsequent calafiplied to an
instance ofC during the same session, the routine call has no effect; if the routine
a function, the value it returns is the same as the value returned by the first call.

8.7 LOCAL ENTITIES AND Result

Local_declarations 2 Jocal Entity _declaration_list

Local Entity rule

Let Id be the Local declarations part of a routmén a classC. Let locals be the
concatenation of every Identifier_list of every Entity_declaration_grolgh ifthenld is
valid if and only if every Identifiee in Id satisfies the following two conditions:

1+ No feature ofZ hase as its final name.

2+ No formal argument af hase as its Identifier.

Definition: local entity

Most of the rules governing the validity and semantics of declared local entities al
apply to a special predefined entiResult which may only appear in the Routine
body or Postcondition of a function, and denotes the result to be returned by |t
function. Reflecting this similarity, this book uses the term "local entity” to cove
Resultas well as declared local entities.

30 §8.3

8 Routines

8.3 FORMAL ARGUMENTS

Formal_arguments 8 (" Entity_declaration_list ")" IW
Entity _declaration_list 4 (Entity_declaration_group ";" ...} l |
Entity_declaration_group £ Identifier_list Type_mark

Identifier_list 2 {identifier"," ..}*

Type_mark & " Type

Formal Argument rule

Let fa be the Formal_arguments part of a routine a classC. Let formals be the
concatenation of every Identifier_list of every Entity declaration_grofg ibhenfa is AALIDITY
valid if and only if no Identifiee appearing ifiormalsis the final name of a feature ©f

VRFA

Let el be an Entity _declaration_list. Letlentifiers be the concatenation of every
Identifier_list of every Entity declaration_groupfa Thenel is valid if and only if no
Identifier appears more than once in theitishtifiers VALIDITY

VREG|

[Obsolete] | SYNTAX |

[Header_comment] l

8.5 ROUTINE STRUCTURE

1>

Routine

[Precondition]
[Local_declarations]
Routine_body
[Postcondition]
[Rescue]

end ["--" Feature_name]

Routine rule

A Routine part of a routine declaration is valid if and only if one of the following S
conditions holds:

1+ Its Routine_body is an Internal body (beginning wdthor once). YRR

§7.14 DESCRIBING A CLASS FOR CLIENTS: THE SHORT FORM 29

[semanTICS

[sEMANTICS

1+ At most one of théeature_listis the keywordll.
2+ All the otherfeature_list are lists of final names of features@bbtained fronB.

3+ No final feature name appears twice in any such list, or appears in more than ¢
list.

An immediate feature of a class has the following export status:

* |If the Feature_clause which introduces it has no Clients part (that is to say, beg
with the keywordfeature with no further qualification), the feature is exported
(generally available).

* If the Feature_clause which introduces it has a Clients part (that is to say, beg
with feature { A, B, C...}), the feature is selectively available to the descendants o
the classes listed in that Clients part, and to these descendants only.

Definition: secret

If a Feature_clause has an empty Clients list, that is to say, begineatiike {},
then the features it introduces are secret.

If a non-redeclared inherited featdrbeas more than one precursor, it is available to all
classes to which it would be available as a consequence of applying the preceding
separately to each of its precursors.

7.14 DESCRIBING A CLASS FOR CLIENTS: THE SHORT FORM

Definition: short form, abstract form

The short form of a class, also called its abstract form, is a text which has the sa
structure as the class but does not include non-public elements. The short forn
the one that should be used as interface documentation for the class.

7.15 THE FLAT-SHORT FORM

Definition:; flat-short form

The flat-short form of a class is similar to the short form, but applies to th
“reconstructed” full text of a class; you may view it as resulting from a shortenin
step that has been preceded by a “flattening” step, which expands the class tex
unfold all the features obtained from proper ancestors, putting them at the sa
level as the immediate features of the class. Clearly, flattening must take bc
renaming and redefinition into account.

28 §7.12

7.12 THE EXPORT STATUS OF FEATURES

Definition: exported, selectively available

The status of a feature of a class is one of the following:

1+ The feature may be available to all classes. Such a feature is saekjmobted, of
generally available

2+ The feature may be available to specific classes only. In that case it is also available
to the descendants of all these classes. Such a feature is saicdeatediesely
available to the given classes and their descendants.

3+ The feature may be available to no classes. Then it is saicstriet

Definition: available

A feature of a clasSis said to bavailable to a clas<C if and only if it is either
selectively available t& or generally available.

7.13 ADAPTING THE EXPORT STATUS

Clients "{" Class_list "}" SYNTAX |

1> 1>

Class_list {Class_name "," ...}

L

A Clients part is valid if and only if every Class_name appearing in its Class_list is the
name of a class in the surrounding universe. °

WARLIOIMY
VLCP
New_exports 8 export New_export_list IW
New_export_list 8 {New_export_item ;" ...} l |
New_export_item 2 Clients Feature_set
Feature_set 2 Feature_list &ll
Feature_list 8 {Feature_name"," ..}
Export List rule
A New_exports parent appearing in cl&s a Parent clause for a par&htof the form
export {class_list} feature_lisy; ... {class_lisy} feature_lis} VALIDITY:

is valid if and only if (fori in the interval 1n): VLEL

§7.3 CONVENTIONS 27

ATRLIDITY

VLEC

7/ Clients and exports

7.3 CONVENTIONS

Definition: client
A classC is aclient of Sif some ancestor @ is a simple client, an expanded
client or a generic client @&.

Definition: client relation between classes

A classC is a client of a clasB if C is a client of a type whose base clasg-is

A classC is adirect or indirect client of a typeS of baseype Bif there is a
sequence of classe€s == A Gy ... Ch—— B such thath > 1 and every
Ci is a client ofc{i+1}— for 1-le- it n.

The “direct or indirect” forms of the simple client, expanded client and generi
client relations are defined similarly.

7.4 SIMPLE CLIENTS

Definition: simple client

A classC is asimple clientof a typeSif some entity or expression Gfis of typeS.,

7.5 EXPANDED CLIENTS

Definition: expanded client

A classC is anexpanded clientof a typeSif Sis an expanded type and some
attribute ofC is of typeS.

Expanded Client rule

It is valid for a clas€ to be an expanded client of a cl&Sif and only ifSCis not
a direct or indirect expanded client©f

7.6 GENERIC CLIENTS

Definition: generic client, generic supplier

A classC is ageneric clientof a typeSif for some generically derived typgeof
the formB ..., S,...] one of the following holds:

1« CisaclientofT.

2+ One of the Parent clauses@for of a proper ancestor 6f listsT as parent.

26 §6.12

6.12 ANY

Any class other thaGENERALandANY which does not include an explicitly written -
. SEMANTICS
Inheritance clause is considered to have an implicit clause of the form - |

inherit ANY
6.15 PROVIDING YOUR OWN UNIVERSAL CLASS

Whether you use the defadlNY or another one, any system will need to have a class of
nameANY This is a constraint on any valid universe.

WALIGITY

VHAY |

§6.10 FEAURES AND THEIR NAMES 25

6.10 FEATURES AND THEIR NAMES

Definition: name of a feature in a class

Within the text of a clas€, any featurd of C is accessible through a feature name,
known as the name 6fin C. As this expression suggests, the association betwee
a feature and a feature name is not absolute but relative to a class. The same fe:
may well be denoted by different names in different classes.

Definition: original name
Theoriginal name of a feature is the name under which it is declared in its class c
origin.

Definition: final name

Every featurd of a clas< has a final name i@, defined as follows:
 If fis immediate irC, its final name is its original name

 If fis inheritedf is obtained from a feature of a par&uf C. Letparent_namde
(recursively) the final name of that featureBinThen:

* |If the Parent clause fd3 in C contains a Rename_pair of the foremame parent_
nameasnew_namgthe final name dfin C isnew_nameOtherwise, the final name
is parent_name

Definition: final name set

The final names of all the features of a class constitute the final name set of a cla

Definition: inherited name
Theinherited name of a feature obtained from a featdiref a parenB is the final
name off in B.

Definition: name of a feature

In this book, references to the “name” of a feature, if not further qualified, alway
denote the final name.

6.11 INHERITANCE AND EXPANSION

: The only consequence of the expansion status of a class is the semantics of entities o
ottt corresponding types, such asabove. An expanded class may inherit from an non-
expanded one, and conversely. The expansion status is not transmitted under inherite
it is entirely determined by the presence or absence @Xp@ndedmark in the class’s
own Class_header, not by any property of its parents.

24 86.6

Definition: ancestor, descendant

ClassA is anancestor of classB if and only if A is B itself or, recursively, an
ancestor of one d@’'s parents.

ClassB is adescendanf classA if and only ifAis an ancestor @, in other words
if B is A or (recursively) a descendant of one of its heirs.

Definition: proper ancestor, descendant

Theproper ancestorsof a classC are its ancestors other th@ntself. Theproper
descendantof a clasB are its descendants other thanself.

6.6 THE INHERITANCE STRUCTURE

Parent rule

The Inheritance clause of a cla@sis valid if and only if it meets the following two
conditions:

. WAELIGITY
1+ Inevery Parent clause for a cl&ds is not a descendant Bt

VHPR
2+ |f two or more Parent clauses are for classes which have a common aAc&stor

meets the conditions of the Repeated Inheritance Consistency constréint for

6.9 RENAMING

Rename 4 renameRename._list | SYNTAX |
Rename_list 4 {Rename_pair"," ...} l
Rename_pair 4 Feature_namas Feature_name

Rename Clause rule

A Rename_pair of the forlmld_nameasnew_namegappearing in the Rename subclause
of the Parent clause f@&in a clas<C, is valid if and only if it satisfies the following five
conditions:

WELIGITY
1+ old _names the final name of a featuref B. VHRC

2+ old_namedoes not appear as the first element of any other Rename_ pair in the same
Rename subclause.

3+ new_namesatisfies the Feature Name rule @r

4« |f new_namas of the Prefix formf is an attribute or a function with no argument.

5+« If new_namas of the Infix formf is a function with one argument.

SEMANTICS

Renaming does not affect the semantics of an inherited feature, but simply givesitan
final name in an heir, as defined below.

§6.3 FORM OF THE INHERITANCE PART

23

6.3 FORM OF THE INHERITANCE PART

Feature_adaptation

Inheritance = inherit Parent_list
Xk inherit
Parent_list 2 {parent™" ..}
Parent 4 Class_type [Feature_adaptation]
Feature_adaptation 2 [Rename]
[New_exports]
[Undefine]
[Redefine]
[Select]
end
Inheritance 2 inherit Parent_list
Parent_list 2 {parent™" ..}
Parent 4 Class_type [Feature_adaptation]
A

[Rename]
[New_exports]
[Undefine]
[Redefine]
[Select]

end

Definition: parent clause for a class

The Parent_list names a number of Parent clauses. Each Parent clause is relati
a Class_type, that is to say a class n@nmossibly followed by actual generic
parameters (as iB [T, U]). B must be the name of a class in the universe to whict
the current class belongs. The clause is said to be a “Parent claBse for

6.4 RELATIONS INDUCED BY INHERITANCE

Definition: heir, parent

If classC has a Parent clause BythenC is said tanherit from B; B is said to be
aparent of C, andC is said to be aheir of B.

22 86.2

6 The inheritance relation

6.2 AN INHERITANCE PART

Definition: multiple, single inheritance

Multiple inheritance occurs as soon as there is more than one Parent clause (even if
they all refer to the same parent class, a case called repeated inheritance and studied

in chapter 11).

§5.17 OBSOLETE FEATURES 21

[sEMANTICS

The special case is that of a multiple declaration introducing Unique constant attribut
which is covered by the Unique Declaration rule.

5.17 OBSOLETE FEATURES

Declaring a routine as Obsolete does not affect its semantics. But language proces
tools, or at least some of them, should produce a warning when they process a clier
descendant class that uses the routine. The warning should include the Message.

20 §5.14

Definition: same feature name

By convention, two feature names are the same if and only if either of the following
conditions holds:

* They are both identifier features, with identical lower name.

* They are both operator features, both Prefix or both Infix, with identical lower
names.

5.14 VALIDITY OF FEATURE DECLARATIONS

Feature Declaration rule

A Feature_declaration appearing in a cl@sand whose New_feature_list contains one
or more feature namds, ..., f,, is valid if and only if it satisfies all of the following
conditions: AVALIDITY

* Its Declaration_body describes a feature which, according to the rules of 5.11, \rrp
one of: variable attribute, constant attribute, procedure, function.

* None of thefj has the same name as another feature introdudgdimparticular,
fi is not the same name fasor differenti andj).

« If the name of any of thiis the same as the final name of any inherited feature, the
Declaration_body satisfies the Redeclaration rule.

« If the Declaration_body describes a deferred feature, then nonefpistipeeceded
by the keywordrozen.

« If any of thef; is a Prefix name, the Declaration_body describes an attribute or a
function with no argument.

« If any of thef; is an Infix name, the Declaration_body describes a function with
exactly one argument.

« If the Declaration_body describes a once function, the result type involves neither
a Formal_generic_name nor an Anchored type.

5.16 SYNONYMS

Multiple Declaration rule

The semantics of a feature declaration applying to more than one feature name, as in-
SEMANTICS

f1, B, ..., f, some_declaration_body

is (except in one special case) defined as the semantics of the corresponding sequence or
declarations naming only one feature each, and with identical declaration bodies, as in:

f, some_declaration_body

f, some_declaration_body

f, some_declaration_body

§5.12 THE SIGNATURE OF A FEATURE 19

5.12 THE SIGNATURE OF A FEATURE

Definition: signature

The signature of a featuref is a pair @«argument_typesesult_type where both
argument_typeandresult_typeare sequences of types, defined as follows.

 If fis a routineargument_typess the possibly empty sequence of the types of its
arguments. If is an attributeargument_types an empty sequence.

« If fis an attribute or a functiorgesult_typds a one-element sequence, whose single
element is the type df If f is a procedurd,is an empty sequence.

Definition: argument signature

The first component of a feature’s signature, writtegument_typesn this
definition, is called the argument signature of the feature. The argument signat
gives the types of the feature’s arguments; it is an empty sequence for attributes
for routines without arguments.

5.13 FEATURE NAMES

IW Feature_name 2 |dentifier | Prefix | Infix
l Prefix 2 prefix ™ Prefix_operator ™
Infix 2 infix " Infix_operator ""
Prefix_operator 2 Unary | Free_operator
Infix_operator 2 Binary | Free_operator

Definition: identifier feature, operator feature

A feature declared with an identifier is called an identifier feature. A featur
declared with an operator is called an operator feature.

| Unary 8 potlUsr]n
| Binary 8 myngn wpepy g ean
R B R
CIUW A
and | or | xor |
and then| or else| implies

18 §5.9

A routine is either @rocedure or afunction:

» A procedure does not return a result; it may perform a number of operations, some
of which may modify the instance to which the procedure is applied.

* A function returns a result and may also perform operations.

5.9 FEATURE DECLARATIONS: SYNTAX

Feature_declaration 4 New_feature_list Declaration_body IW
Declaration_body & [Formal_arguments l
[Type_mark]
[Constant_or_routine]
Constant_or_routine 2 is Feature_value
Feature_value 2 Manifest_constantynique| Routine

5.10 COMPONENTS OF A FEATURE DECLARATION

New_feature_list {New_feature "," ..}* SYNTAX |

1> 1>

L

New_feature [frozen] Feature_name

5.11 HOW TO RECOGNIZE FEATURES

A Feature_declaration is\ariable attribute declaration if and only if it satisfies the .
following conditions: | il

» There is no Formal_arguments part. l

* There is a Type_mark part.

» There is no Constant_or_routine part.

A Feature_declaration is@nstant attribute declaration if and only if it satisfies
the following conditions:

* There is no Formal_arguments part.
* There is a Type_mark part.

» There is a Constant_or_routine part, which contains either a Manifest_constant or
a Unique.

A Feature_declaration is eoutine declaration if and only if it satisfies the .
following condition: | “"lm |

* There is a Constant_or_routine part, whose Feature_value is a Routine.

In this case the Formal_arguments and Type_mark parts may or may not be present.
If the Type_mark is present, the declaration descridaadion; otherwise it describes
aprocedure.

§5.3 IMMEDIATE AND INHERITED FEATURES 17

SYNTHAR

i

5

Features

5.3 IMMEDIATE AND INHERITED FEATURES

Definitions: features of a class, inherited, origin, introduced

1e
2e

The features of a clagsinclude its inherited features and its immediate features
defined as follows:

The features obtained I&/from its parents, if any, are its inherited features.

In the Features part &, consider a declaration describing a feature f is
inherited, the declaration is in factedeclaration of f, giving f new properties in
C. If this is not the casd,s a new feature, said to be immediat€irC is then the
class of origin(or simply “origin”) off, which is also said to hatroduced in C.

5.6 FEATURES PART: SYNTAX

Features 2 feature {Feature_clauséeature ...} *
Feature_clause 2 [Clients]
[Header_comment]
Feature_declaration_list
Feature_declaration_list £ {Feature_declaration ";" ...}
Header_comment 2 Comment

5.7 FORMS OF FEATURES

Every feature of a class is eitheratiribute or aroutine.

Definition: field

By introducing an attribute in a class, you specify that at run-time every instance
the class will possess a certain value, or field, corresponding to the attribute.

An attribute is eithevariable or constant

If an attribute is variable, the corresponding fields may be different for variou
instances of the class and may change at run-time. As a consequence, the a
values must be stored in the representation of each instance.

If an attribute is constant, the corresponding field is the same value for all instanc
and may not change at run-time. This value appears in the class as part of
attribute declaration.

By introducing a routine in a class, you specify that a certain computation (e

algorithm) must be applicable to instances of the class.

16 §4.9

4.9 FORMAL GENERIC PARAMETERS

Formal_generics 8 " Formal_generic_list "]" IW
Formal_generic_list 4 {Formal_generic ","...} l
Formal_generic 2 Formal_generic_name [Constraint]

Formal_generic_name 8 |dentifier

Constraint 4 r_>"(Class_type

A Formal_generics part of a Class_declaration is valid if and only if every Formal _
generic_nam& appearing in it satisfies the following three conditions:

1+ Gis different from the name of any class in the surrounding universe. TRL Y

2« Gis different from any other Formal_generic_name appearing in the same FormaVCFG
generics_part.

3+ If a Constraint is given, it does not involve any types other than class names and
formal generic parameters other tianmself.

4.10 OBSOLETE CLAUSE

1>

Obsolete

obsoleteMessage | SYNTAX |

Message Manifest_string

Declaring a class as Obsolete does not affect its semantics. But some language proces [~ e
tools should produce a warning when they process a class that relies, as client !
descendant, on an obsolete class. The warning should include the Message. |

4.11 ENDING COMMENT

If present, the ending comment must repeat the Class_name given at the head of the cla

WALIDITY

VCRN|

8§4.5 CLASS TEXT STRUCTURE 15

4.5 CLASS TEXT STRUCTURE

| stax | Class_declaration £ [Indexing]

Class_header

[Formal_generics]
[Obsolete]
[Inheritance]
[Creators]
[Features]

[Invariant]

end["--" class Class_name]

4.7 INDEXING A CLASS

IW Indexing 2 indexing Index_list
l Index_list 8 {Index_clause ";" ...}
Index_clause 2 [IndeX Index_terms
Index 2 |dentifier ":"
Index_terms 2 {Iindex_value"," ..}*
Index_value 2 |dentifier | Manifest_constant

The Indexing clause has no effect on the execution semantics.

BEMANTICS

| 4.8 CLASS HEADER

| SYNTAX | Class_header

l Header_mark

[Header_markElassClass_name

deferred | expanded

(> 1> | >

Class_name Identifier

A Class_header appearing in the text of a dassvalid if and only if it satisfies either
of the following two conditions:

1« There is no header mark of theferred form, andC is effective.
VCCH

2 » There is a Header_mark of theferred form, andC is deferred.

14 §4.2

4 Classes

4.2 OBJECTS

Definitions: object, instance

Viewed as a type, a class describes the properties of a set of possible data structures,
or objects, which may exist during the execution of a system that includes the class;
these objects are called the instances of the class.

4.3 FEATURES

Definitions: feature, attribute, routine

Viewed as a module, a class introduces, through its class text, afeatwés

Some features, calleattributes, represent fields of the class’s direct instances;

others, calledoutines, represent computations applicable to those¢ances.—IY
Since there is no other modular facility than the class, building a software

system in Eiffel means analyzing the types of objects the system will manipulate,

and writing a class for each of these types.

§3.4 SYSTEMS 13

case-independent names, even if the names are written with different ce
conventions in the class texts.

3.4 SYSTEMS

Definition: System, Root
A systemis a set of classes, one of which has been designated mothe the
system, such that all the classes on which the root depends belong to the systel
Definition: Dependency
Here a clas€ is said todependon a clas4\ if one of the following holds:
» Cis an heir ofA.
» Cis aclient ofA.

» Recursively, there is a claBssuch thatC depends oB andB depends oA.

Root Class rule

A classC may be used as root of a system if and only if it satisfies the following thre
conditions:

WALIDITY _ _
| 1+ Cis not generic.

VSRC

2+ Cis not deferred.

3+ Any creation procedure d@ has either no formal argument, or a single formal
argument of typARRAY[STRING.

3.5 CLUSTERS

Definition; Cluster

A cluster is a set of classes, all with different names.

No two classes in a given cluster may have the same class name.

3.6 UNIVERSES

VSCN

Definition: Universe

A universe is a set of clusters.

12

§3.1

3 The architecture of Eiffel software

3.1 OVERVIEW

The constituents of Eiffel software are caltddssesBy extracting classes from a given
universg you may assemble them into executayletemsTo keep your classes and your
development organized, it is convenient to group classesludters

These four concepts provide the basis for structuring Eiffel software:
* A class is a modular unit.

» A system results from the assembly of one or more classes to produce an executable
unit.

* A cluster is a set of related classes.

* A universe is a set of clusters, out of which developers will pick classes to build
systems.

Of these, only “class”, describing the basic building blocks, corresponds directly to
a construct of the language. To build systems out of classes, you will use not a language
mechanism, but tools of the supporting environment. As to clusters and universes, they
are not language constructs but mechanisms for grouping and storing classes using the
facilities provided by the underlying operating system, such as files and directories.

3.3 CLASS TEXTS AND CLASS NAMES

Every class has a name, suclDEBCUMENT or PARAGRAPHand a class text which
describes the features of the class and its other properties.

For class names, as for all uses of identifiers, letter case is not significant: identifiers
such adDOCUMENT documentand everdOcUmEnThave the same semantics when
viewed as class names.

ition:

The standard recommended style in Eiffel texts is to write all class names using

exclusively the upper name of thss,thatis-to-say the name-allin-uppercase(such as
DOCUMENT.-
Definition: Class Name

The term “class name” as used in this book denotes the upper name of a class. In
particular, two classes are said to have the same class name if they have the same

§2.11 REQUIREMENTS ON LANGUAGE PROCESSING TOOLS 11

2.11 REQUIREMENTS ON LANGUAGE PROCESSING TOOLS

The definition of Eiffel syntax, validity and semantics contained in this book is also
specification of certain aspects of the corresponding language processing tools.

Not all aspects apply to all language processing tools.

A language processing tool that processes software components at a certain Ie
(syntax, validity, semantics) is not required to perform the tasks associated with that le
| oncomponents which do nebtsatisfy the requirements at the previous levels.

In almost all cases, authors of tools should follow a stricter guideline and make st
that their toolsreject any input that does not satisfy the rules applying to the earlie
levels. Such rejection should include a clear error message. For syntax, the mes:
should identify the production which is not properly observed; for validity it should give
the code of the violated validity constraint (and the clause number for constraints divid
into clauses).

Two special considerations may justify occasional departures from this genel
obligation of rejection:

1+ A semantic tool may be able to process valid parts of a text, even if other parts
invalid. For example, a compiler may generate code for some valid classes ir
system, rejecting classes which are not valid.

2+ Atool author may have a particular reason for providing a tool or tool option whic
accepts input violating a specific validity constraint. A possible application wouls
be for a prototyping mode which attempts to execute incomplete systems, or sk
certain checks. Such tool variants are outside of the semantics of Eiffel proper &
should be clearly labeled as such, reminding developers that acceptance of an ir
text provides no guarantee that the text satisfies the full language rules.

One final note, intended for implementors of Eiffel, and regarding what they mig|
not find here. Although this book goes to great lengths to include every relevant validi
and semantic property, it may of course have left an occasional one out. Such an overs
might be a case ofncompleteness(a missing validity constraint or semantic
specification) oinconsistencyambiguous or contradictory answers).

If you run into such a case while trying to produce language processing tools, ple:
contact the language committee of NICE by sending electronic maamngusage-chair
@nice.twr.com,

10 §2.7

Every validity constraint has a four-character code beginning with V (shown as
VVVV in the above fictitious example).

2.7 INTERPRETING THE CONSTRAINTS

General Validity rule

Every validity constraint relative to a construct is considered to include an implicit
supplementary condition stating that every component of the construct satisfies evel
validity constraint applicable to the component. VALIDITY)

VBGV

2.8 SEMANTICS

A construct specimen which is syntactically legal and valid has an associated semantics,
specifying its run-time effect in a system in which the specimen appears. That semantics
may include executing certain actions, producing a value, or both. It is defined=—the
paragraphs. For specimens made of further components, the specification usually refers
recursively to the components’ own semantics.

It is important to remember that tleemanTICcS paragraphs only apply to valid
specimens. In many cases, the semantic rules would not even make sense otherwise.
Clearly, attempting to describe the effect of an invalid component would be useless.

2.9 CORRECTNESS

Validity is only a structural property; valid Eiffel software is not guaranteed to perform
according to any expected behavior. In fact, execution of valid software may lead to non-
termination, or to exceptions and eventual failure.

For a valid component, then, we need a more advanced criterion: its ability to
operate properly at run-time. This is calleairectnessand is a more elusive aim than
validity, since it involves semantic properties.

2.10 THE CONTEXT OF EXECUTING SYSTEMS

Definitions: run time, machine, platform, language processing tool

The following terminology will serve to discuss the context of system execution:
* Run timeis the period during which a system is executed.

» Themachinas the combination of hardware (one or more computers) and operating
system which makes it possible to execute systems.

» The machine type, that is to say a certain kind of computer and a certain operating
system, is called platform

* To make the text of an Eiffel system executable by a machine, you will need
software tools such as compilers and interpreters, for which this book will use the
term language processing tgofjeneral enough to cover various implementation
techniques.

§2.4 PRODUCTIONS 9

2.4 PRODUCTIONS

Definition: production

To understand a non-terminal, you need a formal description of the structure of
specimens. Such a description is calledpioeluction for the construct.

A production has the form

Construct? right-hand-side

Every non-terminal construct appears on the left-hand side of exactly one su
production. The symbél means “is defined as”.

The right-hand-side of the production describes the structure of specimens of |
left-hand-side construct. Three forms of right-hand-side are available:

* Aggregate, describing a construct made of a fixed number of parts (some of whi
may be optional) to be concatenated in a given order.

» Choice, describing a construct having a number of given variants.

» Repetition, describing a construct made of a variable number of parts, which are
specimens of a given construct.

An aggregate right-hand-side is a non-empty sequence of constructs, some of w
may be in square brackets [] to indicate optional parts.

A choice right-hand side is a non-empty sequence of constructs separated
vertical bars | .

A repetition right-hand side is of one of the two forms
{Construct § ...} {Construct § ...}

where §, the separator, is some construct — usually, but not necessarily, termir
Appearing in a production for a left-hand side construct R, this states that a specimer
R consists of zero or more specimens of B, separated, if more than one, by the sepal
8. In the first form, without a +, specimens of R may be empty; in the second form, wi
a +, they must include at least one B.

2.6 VALIDITY

The productions and other elements labe| s=w , as described so far, specify the
structure of constructs.

Definition: validity constraint, valid

Supplementary requirements on the syntactically well-formed specimens of
construct are calledalidity constraints on the construct. Paragraphs introducing
them are labeled by thaLipiTy road sign.

A specimen which follows the syntactic rules and satisfies the constraints will k
accepted by the language processing tools of any Eiffel environment and is saic
bevalid.

8 §2.2

2 Syntax, validity and semantics

2.2 SYNTAX, COMPONENTS, SPECIMENS AND CONSTRUCTS

Eiffel's syntax is the set of rules describing the structure of class texts. It covers neither
limitations on valid texts (described by validity constraints) nor the execution-time
meaning or effect of these texts (described by semantic rules).

Definition: component

Any class text, or syntactically meaningful part of that text, such as an instruction,
an expression or an identifier, is calledoanponent

Definition: construct, specimen

The structure of any components is described bgomstruct. A component
conforming to a certain construct is calledspecimen of that construct. For
example, the construct Class describes the structure of class texts; any particular
class text, built according to the rules given in this book, is a specimen of this
construct.

All constructs have names beginning with a capital letter and written in the default
(roman) font. Each appears in the index with a reference to the page of its syntactical
definition.

An important convention will simplify the discussions: the phrase “an X”, where X
is the name of a construct, serves as a shorthand for “a specimen of construct X”. For
example, “a Class” means “a specimen of construct Class”, in other words a text built
according to the syntactical specification of construct Class.

2.3 TERMINALS, NON-TERMINALS AND TOKENS

Every construct is either a “terminal” or a “non-terminal” as defined next.

Definitions: Terminal, Non-terminal, Token

Specimens of a terminal construct have no further syntactical structure. Examples
include reserved words (such@ass Resultetc.), constants such as integers, and
identifiers used to denote classes, features and entities. In contrast, the specimens
of a non-terminal construct are defined in terms of other constructs.

Definition: token, lexical component

The specimens of terminal constructs are catltéens or lexical components
They form the basic vocabulary out of which you may build more complex texts —
specimens of non-terminals.

§ CHANGES

A preliminary standard document for the Kernel Library, knowrnhasPELKS
(Proposed- Eiffel Library Kernel Standad)is—currently under—study
by NICE. To avoid any ambiguity or contradiction, all
discussions of Kernel Library classes in this book have been replaced by references tc
PELKS.

CHANGES

This bookcorrespnds to the second printing dEiffel: The Languagelt
incorporates a few corrections corresponding to mistakes that have been detected s
the publication of the book. The principal among these changes are listed in chaptelr
of ISE Eiffel: The Environmer{Technical Report TR-39/IE).

A complete list of the changes will be made available separately. Time prevent
inclusion of change bars for the first release of this document, but they will be part
future editions; all changes have been carefully logged.

In case of discrepancy betweEiffel.: The LanguagendEiffel: The Reference
follow the document that has the latest printing date, unless the problem appears to be
to a text processing mistake. Remember that at the basis of Eiffel there is only c
document; the only differences result from how one selects and prints portions of tl
document. This is the required condition for the stability, maturity and credibility of th
Eiffel language; in other words, for its success.

The present book uses the same conventiok#f@s: The LanguageTo avoid any
confusion, the original chapter and section numbers have been retained. So if you h
leafed through this book before reading the present preface, you may have wondered
the first chapter is number 2 and its first section 2.2; but the purpose is clear: makin
easy to find the corresponding plac&iffel: The Languagé& when examining some part
of the edifice you want to retrieve the scaffolding — in other words some of th
supporting comments and examples. Using a different section numbering scheme for
present book would have caused endless misunderstandings.

Unlike the sections, the pages have been renumbered, since consecutive numbe
facilitates searching for specific information.

In contrast withEiffel: The Languagethis book avoids repetition of any kind. This
is why you will find no syntax summary or syntax diagram. Such elements (which a
present in the complete description) will be easy to add if readers feel they are necess

There is currently no index, but this omission will be repaired in a future version.

Finally, please remember that the present edition is only the second relE&fed:of
The Referencén particular, some errors may remain in the software that served to extre
the information and produce the index. Indulgence is thus requested from the reader.

ACKNOWLEDGMENTS

In addition to the acknowledgments included at theand the preface tdiffel: The
Languageit is appropriate to thank the various readers who have contributed commel
since the book’s publication, most remarkably David Hollenberg from the Informatio
Systems Institute of the University of Southern California and Helmut Weber fror
Austria, formerly from IBM.

THE SHORT FORM

The worst that could happen to the description of Eiffel is to follow the fate of so many
earlier languages: the emergence of several descriptions, each slightly incompatible with
the others.Eiffel: The Languagewent to considerable length to prevent this from
happening. By threading several levels of discourse into a single cloth, the book was able
to forestall eventual divergence.

In particular, the book relied on an extensive system of “road signs” to identify each
of the interwoven threads: syntax, validity, semantics, comment, caveat, preview, reminder.

As this system is directly reflected in the source electronic form of the original
document, it is possible to use software tools, aided by a little human intervention, to
extract one or several of the threads. This approach is what made the present book
possible. It is not, strictly speaking, a new book, buexdnact of the relevant parts of
Eiffel: The Language

Another way of expressing this observation is to claim that producing this book was,
to a certain extent, a software project: writing the tools that would extract the essential parts
of the complete document and ignore the rest. This effort required some “massaging”, as
programmers say, of the original text, to mark some parts as retained and others as
discarded. But the extent of that massaging was remarkably limited: the text was organized
in such a systematic way that most of the extraction could be done automatically, based on
a number of selection rules not unlike those of a little expert systems.

Anyone familiar with the Eiffel method will have recognized the idea: it is the
notion of short form. To document an Eiffel class, you do not as a rule write a separate
document; you should instead include the relevant information in the class text itself, and
rely on computer tools to extract views of the class at various levels of abstraction, in
particular the short (or flat-short) form which only keeps the interface properties of the
class — signatures, preconditions, postconditions and header comments of exported
features, class invariant — while discarding the implementation information (non-
exported features, routine bodies, distinction between functions and attributes). Here we
are doing the same with respect to the language itself: using the power of the computer
to remove the non-essential information from a complete description.

The major advantage, in the case of classes, is that we can keep a single description.
So when things evolve — as they inevitably will, be they classes or languages — we have
only one document to maintain. This may be callegtheciple of single referenceand
is essential to the smooth evolution of the language and its description.

Although the work of the NICE library committee may cause changes to be brought
to the present document independentlizibfel: The Languageesvery effort will be made
to maintain the principle of single reference, avoiding the disaster that divergence
between the two documents would mean for Eiffel. In particular, the structure and section
numbering will be kept the same for the two books, and changes made to the present one
as a result of the committee’s work will be continuously reflected back into the electronic
version ofEiffel: The Language

LIBRARY ELEMENTS

The definition of Eiffel relies on a number of predefined classesan Kernel
. covering such fundamental notions as basic ty@®SQLEAN
INTEGERand the like), arrays, input and output.

8§ WHAT IS EIFFEL?

Preface

This document serves two purposes:

* It is submitted to the Language Committee of tNenprofit International
Consortium for Eiffels the second step towards a standard definition of Eiffel (th
first step was the bodkiffel: The Language

* |t provides users of Eiffel with a short language definition.

For the first of these goals, note that the present Preface is not part of the inten
Standard.

WHAT IS EIFFEL?

The name Eiffel covers a method and a language for the systematic developmen
quality software, based on the full application of object-oriented principles.

Only the language aspect is covered in this book. Other documents are available
the method and on the various compilers, tools and environments that make it possibl
develop software with Eiffel.

A complete description of the Eiffel language has been previously published: tl
bookEiffel: The LanguagéPrentice Hall, second printing with corrections, 1992, ISBN
0-13-24795-7). The intent of that document is to provide under a single cover a prec
reference, a tutorial, a Guide for the Perplexed, and a detailed user’s manual for
language. As a result, much of the space in it is occupied by examples, explanatic
justifications, discussions, previews, reminders and commegiftel: The Language
does not shun repetition; occasionally, for example, some pé-ci discussion needs
to refer to the syntax of a construct seen in a distant chapter, and simply reproduces
syntax specification for the convenience of the reader.

In some cases, however, a shorter reference may be necessary. A typical examg
that of someone implementing an Eiffel compiler, who may be presumed to be famili
with the rationale behind the various components of the language, but will need
documeninere he can quickly find precise answers to specific questions, often o
fine points (“Can the target of an anchored declaration be anchored too?”). Anott
example is that of a user who is familiar with the language but wants to keep a conc
reference on his desk.

Providing such a no-frills description of Eiffel is the purposeEdfel: The
Reference

This book is not meant as a first introduction to Eiffel. If you do not know
the language, or know it only superficially, you should r&#tel: The
Language The present book will mostly be useful as a summaigyifoél:
The Languagéor readers who are familiar with that earlier book.

Must it be assumed that because we are engineers beauty is not c
concern, and that while we make our constructions robust and durabl
we do not also strive to make them elegant?

Is it not true that the genuine conditions of strength always comply witl
the secret conditions of harmony?

The first principle of architectural esthetics is that the essential lines o
a monument must be determined by a perfect adaptation to its purpos

Gustave Eiffel, 1887

From his response in the newspaberTempsa a petition by
members of the literary and artistic Establishment protesting his
project of elevating a tower of iron in Paris.

Book identification
Eiffel: The ReferencéSE Technical Report TR-EI-41/ER.

Publication history
First published a<iffel: The LanguaggqTR-EI-2/BR) in 1988. Successive versions appeared in
subsequent years and were replaced by TR-EI-17Hffel: The Languagén 1991, second revised
book published by Prentice Hall, ISBN 0-13-245-B25t-edition
i)2 avision is

The majority of the material in the present book is excerpted Hiffied: The Language

Author
Bertrand Meyer.

Software credits
See “Credits” at the end of the Preface andiffel: The Language.

Cover design
Rich Ayling.

Copyright notice and proprietary information
Copyright © Bertrand Meyer, 1992, 1995.
The material fronkiffel: The Languagés reproduced here under permission from copyright holder and
the publisher for the exclusive benefit of users of ISE Eiffel 3. In addition, the copyright holder grants
permission to members in good standing of the Nonprofit International Consortium for Eiffel to make
any use of this document that does not infringe on the rights of other parties, in particular the publisher.

Eiffel.

The Reference

