
ELKS: THE EIFFEL LIBRARY KERNEL STANDARD

VINTAGE 95

(Also: vintage 98, Revision 0)

4) on

ical to

dobe

sion 0

eitzer.

posal

the
, is

the
Report identification
TR-EI-48/KL: The Eiffel Library Standard.(Earlier title:The Proposed Eiffel Library Kernel Standard). Prepared
for the Nonprofit International Consortium for Eiffel by:

Interactive Software Engineering
ISE Building, second floor, 270 Storke Road
Goleta, CA 93117 USA
Phone 805-685-1006, Fax 805-685-6869
http://eiffel.com, <info@eiffel.com>

Publication history
First published: 14 July 1994.
Version 5: 25 September 1994.
Version 6: 10 October 1994.
Version 7: 12 January 1995, integrating the result of the votes of the NICE library committee (December 199
classesANY, PLATFORMandGENERAL..
Version 8, 4 June 1995, approved as the vintage 95 library standard.
The present text is version 9, 26 July 1998. It is not really a new version since the technical content is ident
version 8 . The purposes of this revision are:

• To provide a PDF version (earlier releases were available on paper and in Postscript).
• To perform text formating changes, taking advantage of color and circumventing a catastrophic bug of A

FrameMaker 5.5.
• To update addresses (mostly on the present page).
• Most importantly, to prepare for ELKS 98. As a working document this can thus be considered as revi

of ELKS 98.

Authors
The document was written by Bertrand Meyer and benefited from numerous discussions with Michael Schw
The substance (the kernel specification) is the result of a collective effort with contributions from:

Eric Bezault (ISE, Santa Barbara)
Roger Browne (Everything Eiffel, Great Britain)*
Didier Dupont (SOL, Paris)
Fred Hart (Tower Technology, Atlanta)*
Aaron Hillegas (Tower Technology, Atlanta)
Rock Howard (Tower Technology, Austin)*
Paul Johnson (GEC-Marconi, Great Britain)**
Xavier Le Vourch (ISE, Santa Barbara)
David Morgan (ISE, Santa Barbara)
Bertrand Meyer (ISE, Santa Barbara)
Christine Mingins (Monash University, Melbourne), chairman of the NICE library committee
Michael Schweitzer (Swissoft, Göttingen)*
Philippe Stephan (SCENEC, Paris)
Robert Switzer (Swissoft, Göttingen, and University of Göttingen)*
Steve Tynor (Tower Technology, Atlanta)*
Dino Valente (ISE, Santa Barbara)

The influence of the Gustave kernel proposal (authors marked * above) and the GEC-Marconi kernel pro
(author marked ** above) is gratefully acknowledged.

Copyright notice

Copyright Nonprofit International Consortium for Eiffel (NICE), 1995. Use and duplication of this document for
work of NICE, in conformance with the bylaws and regulations of NICE, or by members of NICE for any purpose
permitted provided the present copyright notice is included in every copy. Any other use or duplication requires
permission of the copyright holder.

Contents

 Contents 3

0 INTRODUCTION 5

1 CONTENTS OF THIS STANDARD 5

1.1 Definition: this Standard 5

1.2 Scope of this Standard 6

1.3 Other documents 6

2 COMPATIBILITY CONDITIONS 6

2.1 Definitions 6

Required Classes 6
Required Flatshort Form 6
Flatshort Compatibility 6
Required Ancestry Links 6

2.2 Kernel compatibility 7

Definition 7

2.3 Flatshort Conventions 7

Definition 7

2.4 Flatshort Compatibility 8

Definition 8

3 REQUIRED CLASSES 9

4 REQUIRED ANCESTRY LINKS 10

5 SHORT FORMS OF REQUIRED CLASSES 13

5.1 ClassGENERAL 13
5.2 ClassANY 15
5.3 ClassCOMPARABLE 16

CONTENTS4
5.4 ClassHASHABLE 17
5.5 ClassNUMERIC 18
5.6 ClassBOOLEAN 20
5.7 ClassCHARACTER 21
5.8 ClassINTEGER 23
5.9 ClassREAL 26
5.10 ClassDOUBLE 29
5.11 ClassPOINTER 32
5.12 ClassARRAY 33
5.13 ClassSTRING 35
5.14 ClassSTD_FILES 39
5.15 ClassFILE 40
5.16 ClassSTORABLE 43
5.17 ClassMEMORY 44
5.18 ClassEXCEPTIONS 45
5.19 ClassARGUMENTS 46
5.20 ClassPLATFORM 47
5.21 ClassBOOLEAN_REF 48
5.22 ClassCHARACTER_REF 49
5.23 ClassDOUBLE_REF 50
5.24 ClassINTEGER_REF 51
5.25 ClassPOINTER_REF 52
5.26 ClassREAL_REF 53

6 APPENDIX A: THE KERNEL STANDARDIZATION PROCESS 54

6.1 Why plan a process? 54

6.2 Cycle time 54

6.3 Vintages 54

6.4 Yearly schedule 54

6.5 Intermediate corrections 55

6.6 Eiffel Kernel Supplier requirements 55

7 APPENDIX B: DIFFERENCES UP TO ELKS 95 56

8 INDEX 59

THE EIFFEL KERNEL LIBRARY STANDARD §05

ong
ring
the

iffel

m
this

sent
re
rving

amic
ard.

“this
, with
ents.

his
rnel
s),
page
0 INTRODUCTION

[This introduction is not part of the Standard.]

0.1
To favor the interoperability between implementations of Eiffel, it is necessary, al
with a precise definition of the language, to have a well-defined set of libraries cove
needs that are likely to arise in most applications. This library is known in Eiffel as
Kernel Library.

0.2
The present document defines a standard for the Kernel Library. If an E
implementation satisfies this Standard — under the precise definition ofKernel
Compatibilitygiven in section 2.2 — it will be able to handle properly any Eiffel syste
whose use of the Kernel Library only assumes the library properties defined in
Standard.

0.3
The Eiffel Library standardization process, as described in Appendix A of the pre
document, is based on a dynamic view which, in the spirit of Eiffel’s own “featu
obsolescence” mechanism, recognizes the need to support evolution while prese
the technology investment of Eiffel users. One of the consequences of this dyn
view is to definevintagescorresponding to successive improvements of the Stand
The present document describesVintage 95, valid for the calendar year 1995.

1 CONTENTS OF THIS STANDARD

1.1 Definition: this Standard
The Eiffel Kernel Library Standard, denoted in the present document by the phrase
Standard”, is made up of the contents of sections 1 to 5 of the present document
the exception of elements appearing between square brackets [...] which are comm

[As a result of the preceding definition the following elements are not part of t
Standard: section 0, the table of contents, Appendix A in section 6 (the Ke
Library Standardization process), Appendix B in section 7 (list of difference
the Index in section 8, and elements playing a pure typesetting role such as
headers.]

§2 COMPATIBILITY CONDITIONS 6

iffel
s the
this
s

the
as

an
nce
f a

of

ition

names

orms

orms
.

ance

ired
for
1.2 Scope of this Standard
This Standard defines a number of library-related conditions that an E
implementation must satisfy. These conditions affect a set of classes known a
kernel library. An implementation that satisfies the conditions described in
Standard will be said to bekernel-compatible, a phrase that is abbreviated in thi
Standard as just “compatible”.

[In other contexts it may be preferable to use the full phrase, since
compatibility of an Eiffel implementation also involves other aspects, such
language compatibility.]

[The terms “compatibility” and “compatible” may be felt to be less clear th
“conformance” and “conformant”. The former are used here, however, si
talking about conformance might cause confusions with the Eiffel notion o
type conforming to another.]

1.3 Other documents
The phraseEiffel: The Languageas used in this Standard refers to the second printing
the bookEiffel: The Language, Prentice Hall, 1992, ISBN 0-13-245-925-7.
For the purposes of this Standard, the definition of the Eiffel language is the defin
given byEiffel: The Language.
In case of contradictions between the library specifications given byEiffel: The
Languageand those given in this Standard, the latter shall take precedence.

2 COMPATIBILITY CONDITIONS

2.1 Definitions

2.1.1 Required Classes
In this Standard, the phrase “Required Classes” denotes a set of classes whose
are those listed in section 3.

2.1.2 Required Flatshort Form
In this Standard, the phrase “Required Flatshort Forms” denotes the flatshort f
given for the Required Classes in section 3.

2.1.3 Flatshort Compatibility
In this Standard, a class is said to be Flatshort-Compatible with one of the short f
given in this Standard if it satisfies the conditions given in section 2 of this Standard

2.1.4 Required Ancestry Links
In this Standard, the expression “Required Ancestry Links” denotes the inherit
links specified in section 4 of this Standard.

[The term “Ancestry” is used rather than “Inheritance” because the requ
links may be implemented by indirect rather than direct inheritance, except
which must be a direct heir ofGENERALas per rule 4.2, given on page 10.]

THE EIFFEL KERNEL LIBRARY STANDARD §27

a

th the

h the

also

in a

de
.1.4
be
its

both
its

the

full

dure
in a
well
than
2.2 Kernel compatibility

2.2.1 Definition
An Eiffel implementation will be said to be kernel-compatible if and only if it includes
set of classes satisfying the following five conditions:

2.2.1.1 • For each of the Required Classes, the implementation includes a class wi
same name.

2.2.1.2 • All the Required Ancestry Links are present between these classes.

2.2.1.3 • The flatshort form of each one of these classes is Flatshort-Compatible wit
corresponding Required Flatshort Form.

2.2.1.4 • All the dependents of the Required Classes in the implementation are
included in the implementation.

2.2.1.5 • None of the features appearing in the Required Flatshort Forms appears
Rename clause of any of the implementation’s Required Classes.

[These conditions allow a kernel-compatible implementation to inclu
inheritance links other than the ones described in this Standard; condition 2.2
indicates that for any such link the additional proper ancestors must also
provided by the implementors, since the dependents of a class include
parents.]

[Condition 2.2.1.4 guarantees that if a feature name appears in this Standard
in the Flatshort form of a Required Class and in the flatshort form of one of
proper ancestors, it corresponds to the same feature or to a redefinition of it.]

2.3 Flatshort Conventions

2.3.1 Definition
In the process of assessing for Flatshort Compatibility a classC from a candidate
implementation, the following ten conventions, which have been applied to
Required Flatshort Forms as they appear in this Standard, shall be applied:

2.3.1.1 • No feature shall be included unless it is generally available (as defined inEiffel:
The Language, page 100) or is a general creation procedure (as defined inEiffel:
The Language, page 285).

2.3.1.2 • The Creation clause of the flatshort specification shall include the
specification of all general creation procedures ofC.

2.3.1.3 • Any feature ofC not inherited fromGENERALshall be included in one of the
Feature clauses.

[As a consequence of the last two rules the specification of a creation proce
that is also generally exported will appear twice: in the Creation clause and
Feature clause. Also note that the “features of a class” include inherited as
as immediate features, so that all features inherited from an ancestor other
GENERALmust appear in the flatshort form.]

2.3.1.4 • A featuref from GENERALshall be included if and only ifC redeclaresf.

§2 COMPATIBILITY CONDITIONS 8

ther

ear as

ppear

ith a
exist
t
2.3,

ts

in

f

2.3.1.5 • The header comment of any inherited feature coming from a Required ClassA and
having the same name inC as inA shall end with a line of the form:

-- (FromA.)

2.3.1.6 • The header comment of any inherited feature coming from a Required ClassA and
having a name inC different from its namex in A shall end with a line of the
form:

-- (Fromx in A.)

[The comments defined in the last two rules are applicable regardless of whe
C redeclares the feature.]

2.3.1.7 • If deferred,C shall appear asdeferred class.

2.3.1.8 • Any deferred feature ofC shall be marked asdeferred.

2.3.1.9 • In case of precondition redeclaration, the successive preconditions shall app
a single Precondition clause, separated by semicolons.

2.3.1.10 • In case of postcondition redeclaration, the successive preconditions shall a
as a single Postcondition clause, separated byand then.

2.4 Flatshort Compatibility
2.4.1 Definition

A class appearing in an Eiffel implementation is said to be Flatshort-Compatible w
class of the same name listed in this Standard if and only if any difference that may
between its flatshort formic and the flatshort formsc of the corresponding class as i
appears in section 5, where both flatshort forms follow the conventions of section
belongs to one of the following eleven categories:

2.4.1.1 • A feature that appears inic but not insc, whose Header_comment includes, as i
last line, the mention:

-- (Feature not in Kernel Library Standard.)

2.4.1.2 • An invariant clause that appears inic but not insc.

2.4.1.3 • For a feature that appears in bothic andsc, a postcondition clause that appears
ic but not insc.

2.4.1.4 • For a feature that appears in bothic andsc, a precondition insc that implies the
precondition in ic, where the implication is readily provable using rules o
mathematical logic.

2.4.1.5 • For a feature that appears in bothic andsc, a postcondition or invariant clause inic
that implies the corresponding clause insc, where the implication is readily
provable using rules of mathematical logic.

2.4.1.6 • A difference between the Tag_mark of an Assertion_clause inic and its
counterpart insc.

2.4.1.7 • For a feature that appears in bothic andsc, an argument type inscthat is different
from the corresponding type inic but conforms to it.

THE EIFFEL KERNEL LIBRARY STANDARD §39

_

ture_

ture_
r the
this

iffel
ible
re

to the
2.4.1.8 • For a feature that appears in bothic andsc, an argument type inic that is different
from the corresponding type inscbut conforms to it.

2.4.1.9 • For a feature that appears in bothic and sc, a line that appears in the Header
comment ofic but not in that ofsc.

2.4.1.10 • An Index_clause that appears inic but not insc.

2.4.1.11 • A difference regarding the order in which a feature appears inic and sc, the
Feature_clause to which it belongs, the Header_comment of such a Fea
clause, or the presence inic of a Feature_clause that has no counterpart insc.

[As a consequence of section 2.4.1.11, the division of classes into one Fea
clause or more, and the labels of these clauses, appear in this document fo
sole purpose of readability and ease of opdreference, but are not part of
Standard.]

[The goal pursued by the preceding definition is to make sure that an E
system that follows this Standard will be correctly processed by any compat
implementation, without limiting the implementors’ freedom to provide mo
ambitious facilities.]

3 REQUIRED CLASSES

The Required Classes are the following twenty classes [ordered from the general
specific, as in section 5]:

3.1 • GENERAL[flatshort form in section 5.1].

3.2 • ANY[flatshort form in section 5.2].

3.3 • COMPARABLE[flatshort form in section 5.3].

3.4 • HASHABLE[flatshort form in section 5.4].

3.5 • NUMERIC[flatshort form in section 5.5].

3.6 • BOOLEAN[flatshort form in section 5.6].

3.7 • CHARACTER[flatshort form in section 5.7].

3.8 • INTEGER[flatshort form in section 5.8].

3.9 • REAL[flatshort form in section 5.9].

3.10 • DOUBLE[flatshort form in section 5.10].

3.11 • POINTER[flatshort form in section 5.10].

3.12 • ARRAY[flatshort form in section 5.12].

3.13 • STRING[flatshort form in section5.13).

3.14 • STD_FILES[flatshort form in section 5.14].

3.15 • FILE [flatshort form in section 5.15].

3.16 • STORABLE[flatshort form in section 5.16].

§4 REQUIRED ANCESTRY LINKS 10

ing
arrays
the

the
3.17 • MEMORY[flatshort form in section 5.17].

3.18 • EXCEPTIONS[flatshort form in section 5.18].

3.19 • ARGUMENTS[flatshort form in section 5.19].

3.20 • PLATFORM[flatshort form in section 5.20].

3.21 • BOOLEAN_REF[flatshort form in section 5.21].

3.22 • CHARACTER_REF[flatshort form in section 5.22].

3.23 • DOUBLE_REF[flatshort form in section 5.23].

3.24 • INTEGER_REF[flatshort form in section 5.24].

3.25 • POINTER_REF[flatshort form in section 5.25].

3.26 • REAL_REF[flatshort form in section 5.26].

[The classes appear in this section and section and section 5 in the follow
order: universal classes; deferred classes for basic classes; basic classes;
and strings; operating system interface; auxiliary reference classes for
definition of basic classes.]

4 REQUIRED ANCESTRY LINKS

The following constitute the required ancestry links [ordered alphabetically, after
first rule, by the name of the applicable descendant class]:

4.1 • Every Required Class exceptGENERALis a descendant ofANY

4.2 • ANYis an heir ofGENERAL.

4.3 • BOOLEANis a proper descendant ofBOOLEAN_REF.

4.4 • BOOLEAN_REFis a proper descendant ofHASHABLE.

4.5 • CHARACTERis a proper descendant ofCHARACTER_REF.

4.6 • CHARACTER_REFis a proper descendant ofCOMPARABLE.

4.7 • CHARACTER_REFis a proper descendant ofHASHABLE.

4.8 • DOUBLEis a proper descendant ofDOUBLE_REF.

4.9 • DOUBLE_REFis a proper descendant ofCOMPARABLE.

4.10 • DOUBLE_REFis a proper descendant ofHASHABLE.

4.11 • DOUBLE_REFis a proper descendant ofNUMERIC.

4.12 • FILE is a proper descendant ofMEMORY.

4.13 • INTEGERis a proper descendant ofINTEGER_REF.

4.14 • INTEGER_REFis a proper descendant ofCOMPARABLE.

4.15 • INTEGER_REFis a proper descendant ofHASHABLE.

4.16 • INTEGER_REFis a proper descendant ofNUMERIC.

THE EIFFEL KERNEL LIBRARY STANDARD §411

d

4.17 • POINTERis a proper descendant ofPOINTER_REF.

4.18 • POINTER_REFis a proper descendant ofHASHABLE.

4.19 • REALis a proper descendant ofREAL_REF.

4.20 • REAL_REFis a proper descendant ofCOMPARABLE.

4.21 • REAL_REFis a proper descendant ofHASHABLE.

4.22 • STRINGis a proper descendant ofCOMPARABLE.

4.23 • STRINGis a proper descendant ofHASHABLE.

4.24 • STRINGis a proper descendant ofHASHABLE.

[4.1 follows fromEiffel: The Language; the language description is considere
to be amended in such a way thatPLATFORMis a class without privileges, to be
inherited explicitly by classes which need access to its features.]

§4 REQUIRED ANCESTRY LINKS 12

SHORT FORMS OF REQUIRED CLASSES§513
5 SHORT FORMS OF REQUIRED CLASSES
l

5.1 ClassGENERAL

indexing

description: "Platform-independent universal
properties. This class is an ancestor to all
developer-written classes."

class interface

GENERAL

feature -- Access

generating_type: STRING
-- Name of current object’s generating type
-- (type of which it is a direct instance)

generator: STRING
-- Name of current object’s generating class
-- (base class of the type of which it is a direct
instance)

id_object(id: INTEGER): ANY
-- Object for whichobject_idhas returnedid;
-- void if none.

object_id: INTEGER
-- Value identifying current object uniquely;
-- meaningful only for reference types.

stripped(other: GENERAL): like other
-- New object with fields copied from current
object,
-- but limited to attributes of type ofother.

require

conformance: conforms_to(other)

ensure

stripped_to_other: Result.same_type(other)

feature -- Status report

frozen conforms_to(other: GENERAL): BOOLEAN
-- Does type of current object conform to type
-- of other(as perEiffel: The Language,
chapter13)?

require

other_not_void: other/= Void

frozen same_type(other: GENERAL): BOOLEAN
-- Is type of current object identical to type of
other?

require

other_not_void: other/= Void

ensure

definition: Result= (conforms_to(other) and
other.conforms_to(Current))

feature -- Comparison

frozen deep_equal(some: GENERAL; other: like some):
BOOLEAN

-- Are some andother either both void
-- or attached to isomorphic object structures?

ensure

shallow_implies_deep: standard_equal(some,
other) implies Result

same_type: Resultimplies some.same_type
(other)

symmetric: Resultimplies deep_equal(other,
some)

frozen equal(some: GENERAL; other: like some):
BOOLEAN

-- Are some andother either both void or attached
-- to objects considered equal?

ensure

definition: Result= (some= Voidand other=
Void) or else((some/= Voidand other/= Void)
and then some.is_equal(other))

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equa
-- to current object?

require

other_not_void: other/= Void

ensure

consistent: standard_is_equal(other) implies
Result

same_type: Result implies same_type (other)

symmetric: Resultimplies other.is_equal
(Current)

§5.1 CLASS GENERAL 14
frozen standard_equal(some: GENERAL; other: like
some): BOOLEAN

-- Are someandothereither both void or attached
to
-- field-by-field identical objects of the same type?
-- Always uses the default object comparison
criterion.

ensure
definition: Result= (some= Voidand other=

Void) or else((some/= Voidand other/= Void)
and then some.standard_is_equal(other))

frozen standard_is_equal(other: like Current):
BOOLEAN

-- Is otherattached to an object of the same type as
-- current object, and field-by-field identical to it?

require
other_not_void: other/= Void

ensure
same_type: Resultimplies same_type(other)
symmetric: Resultimplies other.standard_is_

equal(Current)

feature -- Duplication

frozen clone(other: GENERAL): like other
-- Void if other is void; otherwise new object
-- equal toother.

ensure
equal: equal(Result, other)

copy(other: like Current)
-- Update current object using fields of object
attached
-- to other, so as to yield equal objects.

require
other_not_void: other/= Void;
type_identity: same_type(other)

ensure
is_equal: is_equal(other)

frozen deep_clone(other: GENERAL): like other
-- Void if other is void: otherwise, new object
structure
-- recursively duplicated from the one attached to
other

ensure
deep_equal: deep_equal(other, Result)

frozen standard_clone(other: GENERAL): like other
-- Void if other is void; otherwise new object
-- field-by-field identical toother.
-- Always uses the default copying semantics.

ensure
equal: standard_equal(Result, other)

frozen standard_copy(other: like Current)
-- Copy every field ofother onto corresponding
field
-- of current object.

require
other_not_void: other/= Void;
type_identity: same_type(other)

ensure
is_standard_equal: standard_is_equal(other)

feature -- Basic operations

frozen default: like Current
-- Default value of current type

frozen default_pointer: POINTER
-- Default value of typePOINTER
-- (Avoid the need to writep.default for somep
-- of type POINTER.)

ensure
Result = Result.default

default_rescue
-- Handle exception if no Rescue clause.
-- (Default: do nothing.)

frozen do_nothing
-- Execute a null action.

frozen Void: NONE
-- Void reference

feature -- Output

io: STD_FILES
-- Handle to standard file setup

out: STRING
-- New string containing terse printable
representation
-- of current object

print (some: GENERAL)
-- Write terse external representation ofsome on
-- standard output.

frozen tagged_out: STRING
-- New string containing printable representation
of
-- current object, each field preceded by its
attribute
-- name, a colon and a space.

invariant

reflexive_equality: standard_is_equal(Current)

reflexive_conformance: conforms_to(Current)

involutive_object_id: id_object(object_id) = Current

end

SHORT FORMS OF REQUIRED CLASSES §5.215
5.2 ClassANY
indexing

description: "Project-wide universal properties. This
class is an ancestor to all developer-written classes.
ANY inherits fromGENERAL and may be
customized for individual projects or teams."

class interface

ANY

end

§5.3 CLASS COMPARABLE 16
5.3 ClassCOMPARABLE
indexing

description: "Objects that may be compared according
to a total order relation"

note: "The basic operation is"<" (less than); others are
defined in terms of this operation andis_equal."

deferred class interface

COMPARABLE

feature -- Comparison

infix "<" (other: like Current): BOOLEAN

-- Is current object less thanother?

require

other_exists: other/= Void

deferred

ensure

asymmetric: Resultimplies not (other< Current)

infix "<=" (other: like Current): BOOLEAN

-- Is current object less than or equal toother?

require

other_exists: other/= Void

ensure

definition: Result= (Current< other) or is_equal
(other)

infix ">=" (other: like Current): BOOLEAN

-- Is current object greater than or equal toother?

require

other_exists: other/= Void

ensure

definition: Result =(other<= Current)

infix ">" (other: like Current): BOOLEAN

-- Is current object greater thanother?

require

other_exists: other/= Void

ensure

definition: Result =(other< Current)

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equal
-- to current object?
-- (Redefined fromGENERAL.)

require
other_not_void: other/= Void

ensure
symmetric: Resultimplies other.is_equal(Current)
consistent: standard_is_equal(other) implies

Result
trichotomy: Result =(not (Current< other) and

not (other< Current))

max(other: like Current): like Current
-- The greater of current object andother

require
other_exists: other/= Void

ensure
current_if_not_smaller: (Current>= other)

implies (Result= Current)
other_if_smaller: (Current< other) implies

(Result= other)

min (other: like Current): like Current
-- The smaller of current object andother

require
other_exists: other/= Void

ensure
current_if_not_greater: (Current<= other)

implies (Result= Current)
other_if_greater: (Current>other) implies(Result

= other)

three_way_comparison(other: like Current): INTEGER)
-- If current object equal toother, 0; if smaller,
-- –1; if greater, 1.

require
other_exists: other/= Void

ensure
equal_zero: (Result = 0) = is_equal(other)
smaller_negative: (Result =–1) = (Current< other)
greater_positive: (Result = 1) = (Current> other)

invariant
irreflexive_comparison: not (Current< Current)

end

SHORT FORMS OF REQUIRED CLASSES §5.417
5.4 ClassHASHABLE
indexing

description: "Values that may be hashed into an integer
index, for use as keys in hash tables."

deferred class interface

HASHABLE

feature -- Access

hash_code: INTEGER
-- Hash code value

deferred

ensure
good_hash_value: Result>= 0

end

§5.5 CLASS NUMERIC 18
5.5 ClassNUMERIC
indexing

description: "Objects to which numerical operations are
applicable"

note: "The model is that of a commutative ring."

deferred class interface

NUMERIC

feature -- Access

one: like Current

-- Neutral element for"∗" and"/"

deferred

ensure
Result_exists: Result/= Void

zero: like Current
-- Neutral element for"+" and"–"

deferred

ensure
Result_exists: Result/= Void

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?

require
other_exists: other/= Void

deferred

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the powerother?

require
other_exists: other/= Void

deferred

feature -- Basic operations

infix "+" (other: like Current): like Current
-- Sum withother(commutative).

require
other_exists: other/= Void

deferred

ensure
result_exists: Result/= Void
commutative: equal(Result, other+ Current)

infix "–" (other: like Current): like Current
-- Result of subtractingother

require
other_exists: other/= Void

deferred

ensure
result_exists: Result/= Void

infix "∗" (other: like Current): like Current
-- Product byother

require
other_exists: other/= Void

deferred

ensure
result_exists: Result/= Void

infix "/" (other: like Current): like Current
-- Division byother

require
other_exists: other/= Void
good_divisor: divisible(other)

deferred

ensure
result_exists: Result/= Void

infix " "̂ (other: NUMERIC): NUMERIC
-- Current object to the powerother

require
other_exists: other/= Void
good_exponent: exponentiable(other)

deferred

ensure
result_exists: Result/= Void

prefix "+": like Current
-- Unary plus

deferred

ensure
result_exists: Result/= Void

prefix "–": like Current
-- Unary minus

deferred

ensure
result_exists: Result/= Void

THE EIFFEL KERNEL LIBRARY STANDARD §5.519
invariant

neutral_addition: equal(Current+ zero, Current)
self_subtraction: equal(Current– Current, zero)

neutral_multiplication: equal(Current∗ one, Current)

self_division: divisible(Current) impliesequal(Current/
Current, one)

end

§5.6 CLASS BOOLEAN 20
5.6 ClassBOOLEAN
indexing

description: "Truth values, with the boolean
operations"

expanded class interface

BOOLEAN

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Basic operations

infix "and" (other: BOOLEAN): BOOLEAN
-- Boolean conjunction withother

require
other_exists: other/= Void

ensure
Result_exists: Result/= Void
de_morgan: Result =not (not Currentor (not

other))
commutative: Result =(otherand Current)
consistent_with_semi_strict: Resultimplies

(Currentand thenother)

infix "and then" (other: BOOLEAN): BOOLEAN
-- Boolean semi-strict conjunction withother

require
other_exists: other/= Void

ensure
Result_exists: Result/= Void
de_morgan: Result =not (not Currentor else(not

other))

infix "implies" (other: BOOLEAN): BOOLEAN
-- Boolean implication ofother
-- (semi-strict)

require
other_exists: other/= Void

ensure
definition: Result =(not Currentor elseother)

prefix "not": BOOLEAN
-- Negation.

infix "or" (other: BOOLEAN): BOOLEAN

-- Boolean disjunction withother

require

other_exists: other/= Void

ensure

Result_exists: Result/= Void

de_morgan: Result =not (not Currentand (not
other))

commutative: Result =(otheror Current)

consistent_with_semi_strict: Resultimplies
(Currentor elseother)

infix "or else" (other: BOOLEAN): BOOLEAN

-- Boolean semi-strict disjunction withother

require

other_exists: other/= Void

ensure

Result_exists: Result/= Void

de_morgan: Result =not (not Currentand then
(not other))

infix "xor" (other: BOOLEAN): BOOLEAN

-- Boolean exclusive or withother

require

other_exists: other/= Void

ensure

definition: Result =((Currentor other) and not
(Currentand other))

feature -- Output

out: STRING

-- Printable representation of boolean

invariant

involutive_negation: is_equal(not (not Current))

non_contradiction: not (Currentand (not Current))

completeness: Currentor (not Current)

end

SHORT FORMS OF REQUIRED CLASSES §5.721
5.7 ClassCHARACTER
indexing

description: "Characters, with comparison operations
and an ASCII code"

expanded class interface

CHARACTER

feature -- Access

code: INTEGER

-- Associated integer value

hash_code: INTEGER

-- Hash code value
-- (FromHASHABLE.)

ensure

good_hash_value: Result>= 0

feature -- Comparison

infix "<" (other: like Current): BOOLEAN

-- Is other greater than current character?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

asymmetric: Resultimplies not (other< Current)

infix "<=" (other:like Current): BOOLEAN

-- Is current character less than or equal toother?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result= (Current< other) or is_equal
(other)

infix ">=" (other: like Current): BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result =(other<= Current)

infix ">" (other: like Current): BOOLEAN

-- Is current object greater thanother?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result =(other< Current)

max(other: like Current): like Current

-- The greater of current object andother
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

current_if_not_smaller: (Current>= other)
implies (Result= Current)

other_if_smaller: (Current< other) implies
(Result= other)

min (other: like Current): like Current

-- The smaller of current object andother
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

current_if_not_greater: (Current<= other)
implies (Result= Current)

other_if_greater: (Current> other) implies
(Result= other)

three_way_comparison(other: like Current): INTEGER

-- If current object equal toother, 0; if smaller,
-- –1; if greater, 1.
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

equal_zero: (Result = 0) = is_equal(other)

smaller: (Result =–1) = Current< other

greater_positive: (Result = 1) = Current> other

§5.7 CLASS CHARACTER 22
feature -- Output

out: STRING
-- Printable representation of character
-- (FromGENERAL.)

invariant

irreflexive_comparison: not (Current< Current)

end

SHORT FORMS OF REQUIRED CLASSES §5.823
5.8 ClassINTEGER
indexing

description: "Integer values"

expanded class interface

INTEGER

feature -- Access

hash_code: INTEGERis

-- Hash code value
-- (FromHASHABLE.)

ensure

good_hash_value: Result>= 0

one: like Current

-- Neutral element for"∗" and"/"
-- (FromNUMERIC.)

ensure

Result_exists: Result/= Void

value: Result = 1

sign: INTEGER

-- Sign value (0,–1 or 1)

ensure

three_way: Result = three_way_comparison
(zero)

zero: like Current

-- Neutral element for"+" and"–"
-- (FromNUMERIC.)

ensure

Result_exists: Result/= Void

value: Result = 0

feature -- Comparison

infix "<" (other: like Current): BOOLEAN

-- Is other greater than current integer?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

asymmetric: Resultimplies not (other< Current)

infix "<=" (other: like Current): BOOLEAN
-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
definition: Result= (Current< other) or is_equal

(other)

infix ">=" (other: like Current): BOOLEAN
-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
definition: Result =(other<= Current)

infix ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
definition: Result =(other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
current_if_not_smaller: (Current>= other)

implies (Result= Current)
other_if_smaller: (Current< other) implies

(Result= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
current_if_not_greater: (Current<= other)

implies (Result= Current)
other_if_greater: (Current> other) implies

(Result= other)

§5.8 CLASS INTEGER 24
three_way_comparison(other: like Current): INTEGER

-- If current object equal toother, 0; if smaller,
-- –1; if greater, 1.
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

equal_zero: (Result = 0) = is_equal(other)

smaller: (Result = 1) = Current< other

greater_positive: (Result =–1) = Current> other

feature -- Status report

divisible(other: like Current): BOOLEAN

-- May current object be divided byother?
-- (FromNUMERIC.)

require

other_exists: other/= Void

ensure

value: Result =(other/= 0)

exponentiable(other: NUMERIC): BOOLEAN

-- May current object be elevated to the power
other?
-- (FromNUMERIC.)

require

other_exists: other/= Void

ensure

safe_values: (other.conforms_to(Current) or
(other.conforms_to(0.0) and (Current>= 0)))

implies Result

feature -- Basic operations

abs: like Current

-- Absolute value

ensure

non_negative: Result>= 0

same_absolute_value: (Result = Current)or
(Result =–Current)

infix "∗" (other: like Current): like Current

-- Product byother
-- (FromNUMERIC.)

require

other_exists: other/= Void

infix "+" (other: like Current): like Current
-- Sum withother
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
result_exists: Result/= Void
commutative: equal(Result, other+ Current)

infix "–" (other: like Current): like Current
-- Result of subtractingother
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
result_exists: Result/= Void

infix "/" (other: like Current): DOUBLE
-- Division byother

require
other_exists: other/= Void
good_divisor: divisible(other)

ensure
result_exists: Result/= Void

infix "//" (other: like Current): like Current
-- Integer division of Current byother
-- (From"/" in NUMERIC.)

require
other_exists: other/= Void
good_divisor: divisible(other)

ensure
result_exists: divisible(other)

infix "\\" (other: like Current): like Current
-- Remainder of the integer division of Current by
other

require
other_exists: other/= Void
good_divisor: divisible(other)

ensure
result_exists: Result/= Void

infix " "̂ (other: NUMERIC): DOUBLE
-- Integer power of Current byother
-- (FromNUMERIC.)

require
other_exists: other/= Void
good_exponent: exponentiable(other)

ensure
result_exists: Result/= Void

THE EIFFEL KERNEL LIBRARY STANDARD §5.825
prefix "+": like Current
-- Unary plus
-- (FromNUMERIC.)

ensure
result_exists: Result/= Void

prefix "–": like Current
-- Unary minus
-- (FromNUMERIC.)

ensure
result_exists: Result/= Void

feature -- Output

out: STRING
-- Printable representation of current object
-- (FromGENERAL.)

invariant

irreflexive_comparison: not (Current< Current)

neutral_addition: equal(Current+ zero, Current)

self_subtraction: equal(Current– Current, zero)

neutral_multiplication: equal(Current∗ one, Current)

self_division: divisible(Current) impliesequal(Current/
Current, one)

sign_times_abs: equal (sign∗abs, Current)

end

§5.9 CLASS REAL 26
5.9 ClassREAL
indexing

description: "Real values, single precision"

expanded class interface

REAL

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

one: like Current
-- Neutral element for"∗" and"/"
-- (FromNUMERIC.)

ensure
Result_exists: Result/= Void
value: Result = 1.0

sign: INTEGER
-- Sign value (0,–1 or 1)

ensure
three_way: Result = three_way_comparison(zero)

zero: like Current
-- Neutral element for"+" and"–"
-- (FromNUMERIC.)

ensure
Result_exists: Result/= Void
value: Result = 0.0

feature -- Comparison

infix "<" (other: like Current): BOOLEAN
-- Is other greater than current real?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
asymmetric: Resultimplies not (other< Current)

infix "<=" (other: like Current): BOOLEAN
-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
definition: Result= (Current< other) or is_equal

(other)

infix ">=" (other: like Current): BOOLEAN

-- Is current object greater than or equal toother?

-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result =(other<= Current)

infix ">" (other: like Current): BOOLEAN

-- Is current object greater thanother?

-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result =(other< Current)

max(other: like Current): like Current

-- The greater of current object andother

-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

current_if_not_smaller: (Current>= other)
implies (Result= Current)

other_if_smaller: (Current< other) implies
(Result= other)

min (other: like Current): like Current

-- The smaller of current object andother

-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

current_if_not_greater: (Current<= other)
implies (Result= Current)

other_if_greater: (Current>other) implies(Result
= other)

THE EIFFEL KERNEL LIBRARY STANDARD §5.927
three_way_comparison(other: like Current): INTEGER
-- If current object equal toother, 0; if smaller,
-- –1; if greater, 1.
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
equal_zero: (Result = 0) = is_equal(other)
smaller: (Result =–1) = Current< other

greater_positive: (Result = 1) = Current> other

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
not_exact_zero: Resultimplies (other/= 0.0)

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the power
other?
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
safe_values: (other.conforms_to(0) or

(other.conforms_to(Current) and(Current>=
0.0))) implies Result

feature -- Conversion

ceiling: INTEGER
-- Smallest integral value no smaller than current
object

ensure
result_no_smaller: Result>= Current

close_enough: Result– Current < one

floor: INTEGER
-- Greatest integral value no greater than current
object

ensure
result_no_greater: Result<= Current

close_enough: Current– Result< one

rounded: INTEGER
-- Rounded integral value

ensure
definition: Result = sign∗ ((abs+ 0.5).floor)

truncated_to_integer: INTEGER

-- Integer part (same sign, largest absolute
-- value no greater than current object’s)

feature -- Basic operations

abs: like Current

-- Absolute value

ensure

non_negative: Result>= 0

same_absolute_value: (Result = Current)or
(Result =–Current)

infix "∗" (other: like Current): like Current

-- Product byother
-- (FromNUMERIC.)

require

other_exists: other/= Void

ensure

result_exists: Result/= Void

infix "+" (other: like Current): like Current

-- Sum withother
-- (FromNUMERIC.)

require

other_exists: other/= Void

ensure

result_exists: Result/= Void

commutative: equal(Result, other+ Current)

infix "–" (other: like Current): like Current

-- Result of subtractingother
-- (FromNUMERIC.)

require

other_exists: other/= Void

ensure

result_exists: Result/= Void

infix "/" (other: like Current): like Current

-- Division byother
-- (FromNUMERIC.)

require

other_exists: other/= Void

good_divisor: divisible(other)

ensure

result_exists: Result/= Void

§5.9 CLASS REAL 28
infix " "̂ (other: NUMERIC): DOUBLE
-- Current real to the powerother
-- (FromNUMERIC.)

require
other_exists: other/= Void
good_exponent: exponentiable(other)

ensure
result_exists: Result/= Void

prefix "+": like Current
-- Unary plus
-- (FromNUMERIC.)

ensure
result_exists: Result/= Void

prefix "–": like Current
-- Unary minus
-- (FromNUMERIC.)

ensure
result_exists: Result/= Void

feature -- Output

out: STRING
-- Printable representation of real value
-- (FromGENERAL.)

invariant

irreflexive_comparison: not (Current< Current)

neutral_addition: equal(Current+ zero, Current)

self_subtraction: equal(Current– Current, zero)

neutral_multiplication: equal(Current∗ one, Current)

self_division: divisible(Current) impliesequal(Current/
Current, one)

sign_times_abs: equal (sign∗abs, Current)

end

SHORT FORMS OF REQUIRED CLASSES §5.1029
5.10 ClassDOUBLE
indexing

description: "Real values, double precision"

expanded class interface

DOUBLE

feature -- Access

hash_code: INTEGER

-- Hash code value
-- (FromHASHABLE.)

ensure

good_hash_value: Result>= 0

one: like Current

-- Neutral element for"∗" and"/"
-- (FromNUMERIC.)

ensure

Result_exists: Result/= Void

value: Result = 1.0

sign: INTEGER

-- Sign value (0,–1 or 1)

ensure

three_way: Result = three_way_comparison
(zero)

zero: like Current

-- Neutral element for"+" and"–"
-- (FromNUMERIC.)

ensure

Result_exists: Result/= Void

value: Result = 0.0

feature -- Comparison

infix "<" (other: like Current): BOOLEAN

-- Is other greater than current double?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

asymmetric: Resultimplies not (other< Current)

infix "<=" (other: like Current): BOOLEAN
-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
definition: Result= (Current< other) or is_equal

(other)

infix ">=" (other: like Current): BOOLEAN
-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
definition: Result =(other<= Current)

infix ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
definition: Result =(other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
current_if_not_smaller: (Current>= other)

implies (Result= Current)
other_if_smaller: (Current< other) implies

(Result= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
current_if_not_greater: (Current<= other)

implies (Result= Current)
other_if_greater: (Current> other) implies

(Result= other)

§5.10 CLASS DOUBLE 30
three_way_comparison(other: like Current): INTEGER
-- If current object equal toother, 0; if smaller,
-- –1; if greater, 1.

require
other_exists: other/= Void
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result = 0) = is_equal(other)
smaller: (Result =–1) = Current< other

greater_positive: (Result = 1) = Current> other

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
not_exact_zero: Resultimplies (other/= 0.0)

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the power
other?
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
safe_values: (other.conforms_to(0) or

(other.conforms_to(Current) and (Current>=
0.0))) implies Result

feature -- Conversion

ceiling: INTEGER
-- Smallest integral value no smaller than current
object

ensure
result_no_smaller: Result>= Current

close_enough: Result– Current < one

floor: INTEGER
-- Greatest integral value no greater than current
object

ensure
result_no_greater: Result<= Current

close_enough: Current– Result< one

rounded: INTEGER
-- Rounded integral value

ensure
definition: Result = sign∗ ((abs+ 0.5).floor)

truncated_to_integer: INTEGER
-- Integer part (same sign, largest absolute
-- value no greater than current object’s)

truncated_to_real: REAL
-- Real part (same sign, largest absolute
-- value no greater than current object’s)

feature -- Basic operations

abs: like Current
-- Absolute value

ensure
non_negative: Result>= 0

same_absolute_value: (Result = Current)or
(Result =–Current)

infix "∗" (other: like Current): like Current
-- Product byother
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
result_exists: Result/= Void

infix "+" (other: like Current): like Current
-- Sum withother
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
result_exists: Result/= Void

commutative: equal(Result, other+ Current)

infix "–" (other: like Current): like Current
-- Result of subtractingother
-- (FromNUMERIC.)

require
other_exists: other/= Void

ensure
result_exists: Result/= Void

infix "/" (other: like Current): like Current
-- Division byother
-- (FromNUMERIC.)

require
other_exists: other/= Void

good_divisor: divisible(other)

ensure
result_exists: Result/= Void

THE EIFFEL KERNEL LIBRARY STANDARD §5.1031
infix " "̂ (other: like Current): like Current
-- Current double to the powerother
-- (FromNUMERIC.)

require
other_exists: other/= Void
good_exponent: exponentiable(other)

ensure
result_exists: Result/= Void

prefix "+": like Current
-- Unary plus
-- (FromNUMERIC.)

ensure
result_exists: Result/= Void

prefix "–": like Current
-- Unary minus
-- (FromNUMERIC.)

ensure
result_exists: Result/= Void

feature -- Output

out: STRING
-- Printable representation of double value
-- (FromGENERAL.)

invariant

irreflexive_comparison: not (Current< Current)

neutral_addition: equal(Current+ zero, Current)

self_subtraction: equal(Current– Current, zero)

neutral_multiplication: equal(Current∗ one, Current)

self_division: divisible(Current) impliesequal(Current/
Current, one)

sign_times_abs: equal (sign∗abs, Current)

end

§5.11 CLASS POINTER 32
5.11 ClassPOINTER
indexing

description: "References to objects meant to be
exchanged with non-Eiffel software.”

expanded class interface

POINTER

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Output

out: STRING
-- Printable representation of pointer value
-- (FromGENERAL.)

end

SHORT FORMS OF REQUIRED CLASSES §5.1233
5.12 ClassARRAY
indexing

description: "Sequences of values, all of the same type
or of a conforming one, accessible through integer
indices in a contiguous interval"

class interface

ARRAY[G]

creation

make(minindex, maxindex: INTEGER)
-- Allocate array; set index interval to
-- minindex .. maxindex; set all values to default.
-- (Make array empty ifminindex> maxindex.)

ensure
no_count: (minindex>maxindex) implies(count=

0);
count_constraint: (minindex<= maxindex)

implies (count= maxindex– minindex+ 1)

make_from_array(a: ARRAY[G])
-- Initialize from the items ofa.
-- (Useful in proper descendants of classARRAY,
-- to initialize an array-like object from a manifest
array.)

feature -- Initialization

make(minindex, maxindex: INTEGER)
-- Set index interval tominindex .. maxindex
-- reallocate if necessary; set all values to default.
-- (Make array empty ifminindex> maxindex.)

ensure
no_count: (minindex>maxindex) implies(count=

0);
count_constraint: (minindex<= maxindex)

implies (count= maxindex– minindex+ 1)

make_from_array(a: ARRAY[G])
-- Initialize from the items ofa; reallocate if
-- necessary. (Useful in proper descendants of
-- classARRAY,to initialize an array-like object
-- from a manifest array.)

feature -- Access

entry(i : INTEGER): G
-- Entry at indexi, if in index interval
-- (Redefinable synonym foritem andinfix "@".)

require
good_key: valid_index(i)

frozen item(i : INTEGER): G
-- Entry at indexi, if in index interval

require
good_key: valid_index(i)

frozen infix "@" (i : INTEGER): G
-- Entry at indexi, if in index interval

require
good_key: valid_index(i)

feature -- Measurement

count: INTEGER
-- Number of available indices

lower: INTEGER
-- Minimum index

upper: INTEGER
-- Maximum index

feature -- Comparison

is_equal(other: like Current): BOOLEAN
-- Is array made of the same items asother?
-- (Redefined fromGENERAL.)

feature -- Status report

valid_index(i : INTEGER): BOOLEAN
-- Is i within the bounds of the array?

feature -- Element change

enter(v: G; i: INTEGER)
-- Replacei-th entry, if in index interval, byv.
-- (Redefinable synonym forput.)

require
good_key: valid_index(i)

ensure
inserted: item(i) = v

force(v: like item; i: INTEGER)
-- Assign itemv to i-th entry.
-- Always applicable: resize the array ifi falls out
of
-- currently defined bounds; preserve existing
items.

ensure
inserted: item(i) = v;

higher_count: count>= old count

§5.12 CLASS ARRAY 34
frozen put (v: like item; i: INTEGER)
-- Replacei-th entry, if in index interval, byv.

require
good_key: valid_index(i)

ensure
inserted: item(i) = v

feature -- Resizing

resize(minindex, maxindex: INTEGER)
-- Rearrange array so that it can accommodate
-- indices down tominindex and up tomaxindex.
-- Do not lose any previously entered item.

require
good_indices: minindex<= maxindex

ensure
no_low_lost: lower = minindex.min (old lower)
no_high_lost: upper = maxindex.max(old upper)

feature -- Conversion

to_c: POINTER
-- Address of actual sequence of values,
-- for passing to external (non-Eiffel) routines.

feature -- Duplication

copy(other: like Current)
-- Reinitialize by copying all the items ofother.
-- (This is also used byclone.)
-- (FromGENERAL.)

invariant

consistent_size: count= upper– lower+ 1;

non_negative_count: count>= 0

end

SHORT FORMS OF REQUIRED CLASSES §5.1335
5.13 ClassSTRING
indexing

description: "Sequences of characters, accessible
through integer indices in a contiguous range."

class interface

STRING

creation

frozen make(n: INTEGER)
-- Allocate space for at leastn characters.

require
non_negative_size: n >= 0

ensure
empty_string: count= 0

make_from_string(s: STRING)
-- Initialize from the characters ofs.
-- (Useful in proper descendants of classSTRING,
-- to initialize a string-like object from a manifest
string.)

require
string_exists: s/= Void

feature -- Initialization

from_c(c_string: POINTER)
-- Reset contents of string from contents ofc_
string,
-- a string created by some external C function.

require
C_string_exists: c_string/= Void

frozen remake(n: INTEGER)
-- Allocate space for at leastn characters.

require
non_negative_size: n >= 0

ensure
empty_string: count= 0

make_from_string(s: STRING)
-- Initialize from the characters ofs.
-- (Useful in proper descendants of classSTRING,
-- to initialize a string-like object from a manifest
string.)

require
string_exists: s/= Void

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

index_of(c: CHARACTER; start: INTEGER): INTEGER
-- Position of first occurrence ofc at or afterstart;
-- 0 if none.

require
start_large_enough: start>= 1

start_small_enough: start<= count

ensure
non_negative_result: Result>= 0
at_this_position: Result> 0 implies item(Result)

= c
-- none_before: For everyi in start..Result, item(i)
/= c
-- zero_iff_absent:
-- (Result = 0) = For everyi in 1..count, item(i)
/= c

item(i : INTEGER): CHARACTER
-- Character at positioni

require
good_key: valid_index(i)

substring_index(other: STRING; start: INTEGER):
INTEGER

-- Position of first occurrence ofother at or after
start;
-- 0 if none.

infix "@" (i : INTEGER): CHARACTER
-- Character at positioni

require
good_key: valid_index(i)

feature -- Measurement

count: INTEGER
-- Actual number of characters making up the
string

occurrences(c: CHARACTER): INTEGER
-- Number of timesc appears in the string

ensure
non_negative_occurrences: Result>= 0

§5.13 CLASS STRING 36
feature -- Comparison

is_equal(other: like Current): BOOLEAN

-- Is string made of same character sequence as
other?
-- (Redefined fromGENERAL.)

require

other_exists: other/= Void

infix "<" (other: STRING): BOOLEAN

-- Is string lexicographically lower thanother?
-- (False ifother is void)
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

asymmetric: Resultimplies not (other< Current)

infix "<=" (other: like Current): BOOLEAN

-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result= (Current< other) or is_equal
(other)

infix ">=" (other: like Current): BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result =(other<= Current)

infix ">" (other: like Current): BOOLEAN

-- Is current object greater thanother?
-- (FromCOMPARABLE.)

require

other_exists: other/= Void

ensure

definition: Result =(other< Current)

max(other: like Current): like Current)
-- The greater of current object andother
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
current_if_not_smaller: (Current>= other)

implies (Result= Current)
other_if_smaller: (Current< other) implies

(Result= other)

min (other: like Current): like Current)
-- The smaller of current object andother
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
current_if_not_greater: (Current<= other)

implies (Result= Current)
other_if_greater: (Current> other) implies

(Result= other)

three_way_comparison(other: like Current): INTEGER)
-- If current object equal toother, 0; if smaller,
-- –1; if greater, 1.
-- (FromCOMPARABLE.)

require
other_exists: other/= Void

ensure
equal_zero: (Result = 0) = is_equal(other)
smaller: (Result =–1) = Current< other

greater_positive: (Result = 1) = Current> other

feature -- Status report

empty: BOOLEAN
-- Is string empty?

valid_index(i : INTEGER): BOOLEAN
-- Is i within the bounds of the string?

feature -- Element change

append_boolean(b: BOOLEAN)
-- Append the string representation ofb at end.

append_character(c: CHARACTER)
-- Appendc at end.

ensure
item_inserted: item(count) = c

one_more_occurrence: occurrences(c) = old
(occurrences(c)) + 1

item_inserted: has(c)

THE EIFFEL KERNEL LIBRARY STANDARD §5.1337
append_double(d: DOUBLE)

-- Append the string representation ofd at end.

append_integer(i : INTEGER)

-- Append the string representation ofi at end.

append_real(r : REAL)

-- Append the string representation ofr at end.

append_string(s: STRING)

-- Append a copy ofs, if not void, at end.

ensure

new_count: count= old count+ s.count

-- appended: For everyi in 1..s.count,
-- item (old count+ i) = s.item (i)

fill (c: CHARACTER)

-- Replace every character withc.

ensure
-- allblank: For everyi in 1..count, item(i) = Blank

head(n: INTEGER)

-- Remove all characters except for the firstn;
-- do nothing ifn >= count.

require

non_negative_argument: n >= 0

ensure

new_count: count= n.min (old count)

-- first_kept: For everyi in 1..n, item(i) = old item
(i)

insert(s: like Current; i: INTEGER)

-- Add s to the left of positioni.

require

string_exists: s /= Void;

index_small_enough: i <= count;

index_large_enough: i > 0

ensure

new_count: count= old count+ s.count

insert_character(c: CHARACTER; i: INTEGER)

-- Add c to the left of positioni.

ensure

new_count: count= old count+ 1

left_adjust

-- Remove leading white space.

ensure

new_count: (count/= 0) implies (item(1) /= ’ ’)

put (c: CHARACTER; i: INTEGER)
-- Replace character at positioni by c.

require
good_key: valid_index(i)

ensure
insertion_done: item(i) = c

put_substring(s: like Current; start_pos, end_pos:
INTEGER)

-- Copy the characters ofs to positions
-- start_pos .. end_pos.

require
string_exists: s /= Void;

index_small_enough: end_pos<= count;

order_respected: start_pos<= end_pos;

index_large_enough: start_pos> 0

ensure
new_count: count= old count+ s.count– end_

pos+ start_pos– 1

right_adjust
-- Remove trailing white space.

ensure
new_count: (count/= 0) implies (item(count) /= ’

’)

tail (n: INTEGER)
-- Remove all characters except for the lastn;
-- do nothing ifn >= count.

require
non_negative_argument: n >= 0

ensure
new_count: count = n.min (old count)

feature -- Removal

remove(i : INTEGER)
-- Removei-th character.

require
index_small_enough: i <= count;

index_large_enough: i > 0

ensure
new_count: count= old count– 1

wipe_out
-- Remove all characters.

ensure
empty_string: count= 0

wiped_out: empty

§5.13 CLASS STRING 38
feature -- Resizing

resize(newsize: INTEGER)
-- Rearrange string so that it can accommodate
-- at leastnewsize characters.
-- Do not lose any previously entered character.

require
new_size_non_negative: newsize>= 0

feature -- Conversion

to_boolean: BOOLEAN
-- Boolean value;
-- "true" yieldstrue, "false" yieldsfalse
-- (case-insensitive)

to_double: DOUBLE
-- "Double" value; for example, when applied to
"123.0",
-- will yield 123.0 (double)

to_integer: INTEGER
-- Integer value;
-- for example, when applied to"123", will yield
123

to_lower
-- Convert to lower case.

to_real: REAL
-- Real value;
-- for example, when applied to"123.0", will yield
123.0

to_upper
-- Convert to upper case.

feature -- Duplication

copy(other: like Current)
-- Reinitialize by copying the characters ofother.
-- (This is also used byclone.)
-- (FromGENERAL.)

ensure
new_result_count: count= other.count
-- same_characters: For everyi in 1..count,
-- item(i) = other.item(i)

substring(n1, n2: INTEGER): like Current
--Copyofsubstringcontainingall charactersat indices
-- betweenn1 andn2

require
meaningful_origin: 1 <= n1;
meaningful_interval: n1<= n2;
meaningful_end: n2<= count

ensure
new_result_count: Result.count= n2– n1+ 1
-- original_characters: For everyi in 1..n2–n1,
-- Result.item (i) = item (n1+i–1)

feature -- Output

out: STRING
-- Printable representation
-- (FromGENERAL.)

ensure
result_not_void: Result/= Void

invariant

irreflexive_comparison: not (Current< Current)

empty_definition: empty= (count= 0);

non_negative_count: count>= 0

end

SHORT FORMS OF REQUIRED CLASSES §5.1439
5.14 ClassSTD_FILES
indexing

description: "Commonly used input and output
mechanisms. This class may be used as either
ancestor or supplier by classes needing its facilities."

class interface

STD_FILES

feature -- Access

default_output: FILE
-- Default output.

error: FILE
-- Standard error file

input: FILE
-- Standard input file

output: FILE
-- Standard output file

standard_default: FILE
-- Return thedefault_output or output
-- if default_output is Void.

feature -- Status report

last_character: CHARACTER
-- Last character read by read_character

last_double: DOUBLE
-- Last double read by read_double

last_integer: INTEGER
-- Last integer read by read_integer

last_real: REAL
-- Last real read by read_real

last_string: STRING
-- Last string read by read_line,
-- read_stream, or read_word

feature -- Element change

put_boolean(b: BOOLEAN)
-- Writeb at end of default output.

put_character(c: CHARACTER)
-- Writec at end of default output.

put_double(d: DOUBLE)
-- Writed at end of default output.

put_integer(i : INTEGER)
-- Write i at end of default output.

put_new_line

-- Write line feed at end of default output.

put_real(r : REAL)

-- Write r at end of default output.

put_string(s: STRING)

-- Writes at end of default output.

require

s /= Void

set_error_default

-- Use standard error as default output.

set_output_default

-- Use standard output as default output.

feature -- Input

read_character

-- Read a new character from standard input.
-- Make result available inlast_character.

read_double

-- Read a new double from standard input.
-- Make result available inlast_double.

read_integer

-- Read a new integer from standard input.
-- Make result available inlast_integer.

read_line

-- Read a line from standard input.
-- Make result available inlast_string.
-- New line will be consumed but not part oflast_
string.

read_real

-- Read a new real from standard input.
-- Make result available inlast_real.

read_stream(nb_char: INTEGER)

-- Read a string of at mostnb_char bound
characters
-- from standard input.
-- Make result available inlast_string.

to_next_line

-- Move to next input line on standard input.

end

§5.15 CLASS FILE 40
5.15 ClassFILE
indexing

description: "Files viewed as persistent sequences of
characters."

class interface

FILE

creation

make(fn: STRING)

-- Create file object withfn as file name.

require

string_exists: fn /= Void;

string_not_empty: not fn.empty

ensure

file_named: name.is_equal(fn);

file_closed: is_closed

make_create_read_write(fn: STRING)

-- Create file object withfn as file name
-- and open file for both reading and writing;
-- create it if it does not exist.

require

string_exists: fn /= Void;

string_not_empty: not fn.empty

ensure

exists: exists;

open_read: is_open_read;

open_write: is_open_write

make_open_append(fn: STRING)

-- Create file object withfn as file name
-- and open file in append-only mode.

require

string_exists: fn /= Void;

string_not_empty: not fn.empty

ensure

exists: exists;

open_append: is_open_append

make_open_read(fn: STRING)
-- Create file object withfn as file name
-- and open file in read mode.

require

string_exists: fn /= Void;

string_not_empty: not fn.empty

ensure

exists: exists;

open_read: is_open_read

make_open_read_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for both reading and writing.

require

string_exists: fn /= Void;

string_not_empty: not fn.empty

ensure

exists: exists;

open_read: is_open_read;

open_write: is_open_write

make_open_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for writing;
-- create it if it does not exist.

require

string_exists: fn /= Void;

string_not_empty: not fn.empty

ensure

exists: exists;

open_write: is_open_write

feature -- Access

name: STRING
-- File name

feature -- Measurement

count: INTEGER
-- Size in bytes (0 if no associated physical file)

feature -- Status report

empty: BOOLEAN
-- Is structure empty?

THE EIFFEL KERNEL LIBRARY STANDARD §5.1541
end_of_file: BOOLEAN

-- Has an EOF been detected?

require

opened: not is_closed

exists: BOOLEAN

-- Does physical file exist?

is_closed: BOOLEAN

-- Is file closed?

is_open_read: BOOLEAN

-- Is file open for reading?

is_open_write: BOOLEAN

-- Is file open for writing?

is_plain_text: BOOLEAN

-- Is file reserved for text (character sequences)?

is_readable: BOOLEAN

-- Is file readable?

require

handle_exists: exists

is_writable: BOOLEAN

-- Is file writable?

require

handle_exists: exists

last_character: CHARACTER

-- Last character read byread_character

last_double: DOUBLE

-- Last double read byread_double

last_integer: INTEGER

-- Last integer read byread_integer

last_real: REAL

-- Last real read byread_real

last_string: STRING

-- Last string read by read_line,
-- read_stream, or read_word

feature -- Status setting

close

-- Close file.

require

medium_is_open: not is_closed

ensure

is_closed: is_closed

open_read
-- Open file in read-only mode.

require
is_closed: is_closed

ensure
exists: exists

open_read: is_open_read

open_read_append
-- Open file in read and write-at-end mode;
-- create it if it does not exist.

require
is_closed: is_closed

ensure
exists: exists

open_read: is_open_read

open_append: is_open_append

open_read_write
-- Open file in read and write mode.

require
is_closed: is_closed

ensure
exists: exists

open_read: is_open_read

open_write: is_open_write

open_write
-- Open file in write-only mode;
-- create it if it does not exist.

ensure
exists: exists

open_write: is_open_write

feature -- Cursor movement

to_next_line
-- Move to next input line.

require
readable: is_readable

feature -- Element change

change_name(new_name: STRING)
-- Change file name tonew_name

require
not_new_name_void: new_name/= Void;

file_exists: exists

ensure
name_changed: name.is_equal(new_name)

§5.15 CLASS FILE 42
feature -- Removal

delete
-- Remove link with physical file; delete physical
-- file if no more link.

require
exists: exists

dispose
-- Ensure this medium is closed when
garbage-collected.

feature -- Input

read_character
-- Read a new character.
-- Make result available inlast_character.

require
readable: is_readable

read_double
-- Read the ASCII representation of a new double
-- from file. Make result available inlast_double.

require
readable: is_readable

read_integer
-- Read the ASCII representation of a new integer
-- from file. Make result available inlast_integer.

require
readable: is_readable

read_line
-- Read a string until new line or end of file.
-- Make result available inlaststring.
-- New line will be consumed but not part oflast_
string.

require
readable: is_readable

read_real
-- Read the ASCII representation of a new real
-- from file. Make result available inlast_real.

require
readable: is_readable

read_stream(nb_char: INTEGER)
-- Read a string of at mostnb_char bound
characters
-- or until end of file.
-- Make result available inlast_string.

require
readable: is_readable

read_word
-- Read a new word from standard input.
-- Make result available inlast_string.

feature -- Output

put_boolean(b: BOOLEAN)
-- Write ASCII value ofb at current position.

require
extendible: extendible

put_character(c: CHARACTER)
-- Writec at current position.

require
extendible: extendible

put_double(d: DOUBLE)
-- Write ASCII value ofd at current position.

require
extendible: extendible

put_integer(i : INTEGER)
-- Write ASCII value ofi at current position.

require
extendible: extendible

put_real(r : REAL)
-- Write ASCII value ofr at current position.

require
extendible: extendible

put_string(s: STRING)
-- Writes at current position.

require
extendible: extendible

invariant

name_exists: name/= Void;

name_not_empty: not name.empty;

writable_if_extendible: extendibleimplies is_writable

end

SHORT FORMS OF REQUIRED CLASSES §5.1643
5.16 ClassSTORABLE
r

indexing

description: "Objects that may be stored and retrieved
along with all their dependents. This class may be
used as ancestor by classes needing its facilities."

class interface

STORABLE

feature -- Access

retrieved(file: FILE): STORABLE

-- Retrieved object structure, from external

-- representation previously stored infile.

-- To access resulting object under correct type,

-- use assignment attempt.

-- Will raise an exception (codeRetrieve_
exception)

-- if file content is not aSTORABLE structure.

require

file_not_void: file /= Void;

file_exists: file.exists;

file_is_open_read: file.is_open_read

file_not_plain_text: not file.is_plain_text

ensure

result_exists: Result/= Void

feature -- Element change

basic_store(file: FILE)

-- Produce onfile an external representation of the

-- entire object structure reachable from current
object.

-- Retrievable within current system only.

require

file_not_void: file /= Void;

file_exists: file.exists;

file_is_open_write: file.is_open_write

file_not_plain_text: not file.is_plain_text

general_store(file: FILE)
-- Produce onfile an external representation of the
-- entire object structure reachable from current
object.
-- Retrievable from other systems for same
platform
-- (machine architecture).

require
file_not_void: file /= Void;
file_exists: file.exists;
file_is_open_write: file.is_open_write
file_not_plain_text: not file.is_plain_text

independent_store(file: FILE)
-- Produce onfile an external representation of the
-- entire object structure reachable from current
object.
-- Retrievable from other systems for the same o
other
-- platforms (machine architectures).

require
file_not_void: file /= Void;
file_exists: file.exists;
file_is_open_write: file.is_open_write
file_not_plain_text: not file.is_plain_text

end

§5.17 CLASS MEMORY 44
5.17 ClassMEMORY
indexing

description: "Facilities for tuning up the garbage
collection mechanism. This class may be used as
ancestor by classes needing its facilities."

class interface

MEMORY

feature -- Status report

collecting: BOOLEAN

-- Is garbage collection enabled?

feature -- Status setting

collection_off

-- Disable garbage collection.

collection_on

-- Enable garbage collection.

feature -- Removal

dispose

-- Action to be executed just before garbage
collection

-- reclaims an object.

-- Default version does nothing; redefine in
descendants

-- to perform specific dispose actions. Those
actions

-- should only take care of freeing external
resources

-- they should not perform remote calls on other
objects

-- since these may also be dead and reclaimed.

full_collect

-- Force a full collection cycle if garbage

-- collection is enabled; do nothing otherwise.

end

SHORT FORMS OF REQUIRED CLASSES §5.1845
5.18 ClassEXCEPTIONS
indexing

description: "Facilities for adapting the exception
handling mechanism. This class may be used as
ancestor by classes needing its facilities."

class interface

EXCEPTIONS

feature -- Access

developer_exception_name: STRING
-- Name of last developer-raised exception

require
applicable: is_developer_exception

feature -- Access

Check_instruction: INTEGER
-- Exception code for violated check

Class_invariant: INTEGER
-- Exception code for violated class invariant

Incorrect_inspect_value: INTEGER
-- Exception code for inspect value which is not
one
-- of the inspect constants, if there is no Else_part

Loop_invariant: INTEGER
-- Exception code for violated loop invariant

Loop_variant: INTEGER
-- Exception code for non-decreased loop variant

No_more_memory: INTEGER
-- Exception code for failed memory allocation

Postcondition: INTEGER
-- Exception code for violated postcondition

Precondition: INTEGER
-- Exception code for violated precondition

Routine_failure: INTEGER
-- Exception code for failed routine

Void_attached_to_expanded: INTEGER
-- Exception code for attachment of void value
-- to expanded entity

Void_call_target: INTEGER
-- Exception code for violated check

feature -- Status report

assertion_violation: BOOLEAN
-- Is last exception originally due to a violated
-- assertion or non-decreasing variant?

exception: INTEGER
-- Code of last exception that occurred

is_developer_exception: BOOLEAN
-- Is the last exception originally due to
-- a developer exception?

is_signal: BOOLEAN
-- Is last exception originally due to an external
-- event (operating system signal)?

feature -- Basic operations

die (code: INTEGER)
-- Terminate execution with exit statuscode,
-- without triggering an exception.

raise(name: STRING)
-- Raise a developer exception of namename.

end

§5.19 CLASS ARGUMENTS 46
5.19 ClassARGUMENTS
indexing

description: "Access to command-line arguments. This
class may be used as ancestor by classes needing its
facilities."

class interface

ARGUMENTS

feature -- Access

argument(i : INTEGER): STRING
-- i-th argument of command that started system
execution
-- (the command name ifi = 0)

require
index_large_enough: i >= 0
index_small_enough: i <= argument_count

command_name: STRING
-- Name of command that started system execution

ensure
definition: Result = argument(0)

feature -- Measurement

argument_count: INTEGER
-- Number of arguments given to command that
started
-- system execution (command name does not
count)

ensure
Result>= 0

end

SHORT FORMS OF REQUIRED CLASSES §5.2047
5.20 ClassPLATFORM
indexing

description: "Platform-dependent properties. This class
may be used as ancestor by classes needing its
facilities."

class interface

PLATFORM

feature -- Access

Boolean_bits: INTEGER
-- Number of bits in a value of typeBOOLEAN

ensure

meaningful: Result>= 1

Character_bits: INTEGER
-- Number of bits in a value of typeCHARACTER

ensure

meaningful: Result>= 1

large_enough: 2 ^ Result>= Maximum_
character_code

Double_bits: INTEGER
-- Number of bits in a value of typeDOUBLE

ensure

meaningful: Result>= 1

meaningful: Result>= Real_bits

Integer_bits: INTEGER
-- Number of bits in a value of typeINTEGER

ensure

meaningful: Result>= 1

large_enough: 2 ^ Result>= Maximum_integer

large_enough_for_negative: 2 ^ Result>=
–Minimum_integer

Maximum_character_code: INTEGER
-- Largest supported code forCHARACTERvalues

ensure

meaningful: Result>= 127

Maximum_integer: INTEGER
-- Largest supported value of typeINTEGER.

ensure

meaningful: Result>= 0

Minimum_character_code: INTEGER
-- Smallest supported code forCHARACTER
values

ensure
meaningful: Result<= 0

Minimum_integer: INTEGER
-- Smallest supported value of typeINTEGER

ensure
meaningful: Result<= 0

Pointer_bits: INTEGER
-- Number of bits in a value of typePOINTER

ensure
meaningful: Result>= 1

Real_bits: INTEGER
-- Number of bits in a value of typeREAL

ensure
meaningful: Result>= 1

end

§5.21 CLASS BOOLEAN_REF 48
5.21 ClassBOOLEAN_REF
indexing

description: "Reference class forBOOLEAN"

class interface

BOOLEAN_REF

feature -- Access

item: BOOLEAN
-- Boolean value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Element change

set_item(b: BOOLEAN)
-- Makeb the associated boolean value.

ensure
item_set: item = b

end

SHORT FORMS OF REQUIRED CLASSES §5.2249
5.22 ClassCHARACTER_REF
indexing

description: "Reference class forCHARACTER"

class interface

CHARACTER_REF

feature -- Access

item: CHARACTER
-- Character value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Element change

set_item(c: CHARACTER)
-- Makec the associated character value.

ensure
item_set: item = c

end

§5.23 CLASS DOUBLE_REF 50
5.23 ClassDOUBLE_REF
indexing

description: "Reference class forDOUBLE"

class interface

DOUBLE_REF

feature -- Access

item: DOUBLE
-- Double value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Element change

set_item(d: DOUBLE)
-- Maked the associated double value.

ensure
item_set: item = d

end

SHORT FORMS OF REQUIRED CLASSES §5.2451
5.24 ClassINTEGER_REF
indexing

description: "Reference class forINTEGER"

class interface

INTEGER_REF

feature -- Access

item: INTEGER
-- Integer value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Element change

set_item(i : INTEGER)
-- Makei the associated integer value.

ensure
item_set: item = i

end

§5.25 CLASS POINTER_REF 52
5.25 ClassPOINTER_REF
indexing

description: "Reference class forPOINTER"

class interface

POINTER_REF

feature -- Access

item: POINTER
-- Pointer value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Element change

set_item(p: POINTER)
-- Makep the associated pointer value.

ensure
item_set: item = p

end

SHORT FORMS OF REQUIRED CLASSES §5.2653
5.26 ClassREAL_REF
indexing

description: "Reference class forREAL"

class interface

REAL_REF

feature -- Access

item: REAL
-- Real value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Element change

set_item(r : REAL)
-- Maker the associated real value.

ensure
item_set: item = r

end

§6 APPENDIX A: THE KERNEL STANDARDIZATION PROCESS 54

for
tion

deas
sting

uage
ernel
en a
of

nge.

ary

may

(95),
6 APPENDIX A: THE KERNEL STANDARDIZATION
PROCESS

[This Appendix is not part of the Standard.]

6.1 Why plan a process?
The Eiffel Kernel Library cannot be specified for eternity. Ideas willcome up
new classes and features; ways will be found to do thingsbetter. The evolu
process must be fast enough to enable Eiffel usersto benefit from this flow of i
and avoid technical obsolescence, but orderly enough to protect their exi
investments and modes of operation.

6.2 Cycle time
A revision every ten to fifteen years, as has occurred for programming lang
standards (Fortran, C and Ada are examples) is not appropriate for the Eiffel K
Library. It would foster complacency most of the time, and major upheavals wh
revision is finally brought into effect. A yearly process, similar to the upgrading
wines, car models and stable software products, provides the right pace of cha

6.3 Vintages
Each revision of this Standard describes avintage of theEiffel Library Kernel
Standard. The present version is vintage 1995.

6.4 Yearly schedule
The following deadlines apply to yearyear:

6.4.1 • 1 January: Vintageyeartakes effect.

6.4.2 • 1 April: first permitted date for starting discussions on Vintageyear+1 in
NICE’s Library Committee. (1 January to 31 March is acooling-off period.)

6.4.3 • 1 May: first permitted date for submitting formal proposals to the Libr
Committee for Vintageyear + 1.

6.4.4 • 1 July: last permitted date for submitting initial proposals for Vintageyear +
1.

6.4.5 • 1 September: last permitted date for submitting final proposals (which
result from merging of several proposals) for Vintageyear + 1.

6.4.6 • 1 October: last date by which the Committee may have defined Vintageyear +1.

This schedule is applicable starting with vintage 96. For the present vintage
the first, the date of applicability is 1 July 1995.

THE EIFFEL KERNEL LIBRARY STANDARD §655

sary,
or to
e the
ion
ire a
any
th. If
to a

n

ass.)

after

the
6.5 Intermediate corrections
During the time when a vintage is in effect, minor corrections may prove neces
due for example to typographical errors in the current version of this Standard
inconsistencies discovered by users or implementors of Eiffel. In such a cas
chairman of the Library Committee of NICE may, at his discretion, submit a mot
covering one or more revisions. To be approved, such motions shall requ
unanimous vote of the Library Committee, with the possible exception of
member who has notified the chairman of an absence of more than one mon
approved, such a revision shall receive a revision level and shall give rise
modified Kernel Library Standard, identified as “Vintageyear Level revision_
level”. The modifications shall be integrated into the following year’s vintage.

6.6 Eiffel Kernel Supplier requirements
Any provider of an Eiffel environment must make the following informatio
available to any NICE member:

6.7 • Vintage and revision level currently supported.

6.8 • Any features not supported. (It is not permitted to have a non-supported cl

6.9 • List of classes needed by kernel classes, but not in the kernel, here
referred to as para-kernel classes.

6.10 • Full inheritance hierarchy of kernel and para-kernel classes.

6.11 • List of names of features (immediate or inherited) that appear in
provider’s kernel classes but not in this Standard.

§7 APPENDIX B: DIFFERENCES UP TO ELKS 95 56

ns of

efault

re
age

ng,

now

ny
fic

;
y

7 APPENDIX B: DIFFERENCES UP TO ELKS 95

[This Appendix is not part of the Standard.]

The following differences exist between this Standard and earlierpresentatio
the Kernel Library:

7.1 • Addition toGENERALof a querydefaultwhich returns the default value of the
type of the current object. This also addresses the need to obtain the d
value for typePOINTER; for convenience, sincePOINTERhas no manifest
constant, a querydefault_pointerhas also been included. (See page 14.)

7.2 • Adaptation of the semantics ofcopyand equality features (equal, is_equaland
theirstandard_versions) so that the result is true if and only if the objects a
truly identical, and in particular have the same type. This implies a langu
change too; the previous definition was non-symmetric so thata● copy(b) and
equal(a, b) only applied to the fields corresponding to the attributes ofa’s
type. The earlier effect can still be achieved through functionstripped,as
explained next in 7.5. (See page 13.)

7.3 • Addition to GENERAL of a frozen featuresame_typewhich specifies
conformance both ways. Addition of the requirement thatconforms_tois
frozen too. (See page 13.)

7.4 • Addition of a number of assertion clauses to the features ofGENERAL, in
particular to specify more precisely the semantics of equality, copyi
cloning and conformance.

7.5 • Addition toGENERALof a functionstrippedsuch thatstripped(a) is a clone
of the current object limited to the fields that apply toa’s dynamic type. As a
result, the old semantics of copying and equality mentioned in 7.2 may
be achieved through calls such asa● copy (b● stripped (a)) and equal (a,
b● stripped(a)). (See page 13.)

7.6 • Addition to GENERAL of object_id and id_object to allow unique
identification of objects. (See page 13.)

7.7 • In classPLATFORM, removal of the assumption thatCharacter_bits, Integer_
bits,Real_bitsand Double_bitsare constants. This does notintroduce a
incompatibility with earlier uses except if they relied onthe speci
numerical values. (See page 47.)

7.8 • Removal of PLATFORM from the universal inheritance hierarchy
PLATFORMis no longer a parent ofANYand hence an ancestor of ever

THE EIFFEL KERNEL LIBRARY STANDARD §757

d its
is

ion

.)

the
t

were
the
ded

5.)

to
class, and has no particular language-defined role; classes that nee
facilities must name it explicitly among their proper ancestors. This
actually a language change. (See section 4.)

7.9 • Addition to PLATFORMof featuresMaximum_integer, Minimum_integer,
Maximum_character_codeandMinimum_character_code. (See page 47.)

7.10 • Addition toCOMPARABLEof min andmax functions and of a three-way
comparison function,three_way_comparison, which returns 0, –1 or 1. (See
page 16.)

7.11 • Addition to the arithmetic basic classes of functionsabsandsign (the latter
defined in terms ofthree_way_comparison). Addition toREALandDOUBLE
of floor, ceiling, roundedand integer_part. Addition to DOUBLE of real_
part. (See page 24 and following.)

7.12 • Addition of inheritance links making all basic classes (INTEGERand so on)
heirs ofHASHABLE, so that it is now possible to hash any object. (See sect
4.) Removal of functionis_hashableand the corresponding preconditions.

7.13 • Addition toARRAYof featuresenterandentry as redefinable synonyms to
putanditem(or infix "@"), the latter becoming frozen. (See page 33.)

7.14 • Addition toSTORABLEof a procedureindependent_storewhich produces
machine-independent representations of object structures. (See page 43

7.15 • Addition of a few features to classFILE describing file opening and opening
modes (such as read-only or read-write). In earlier presentations
corresponding class wasUNIX_FILE. The new class is very similar bu
removes any Unix-specific aspect. (See section 5.15.)

7.16 • Changes of names in classSTD_FILESandFILE : for consistency with the
usual Eiffel naming style, underscores were added and abbrevations
expanded. In the following list (which uses the order of appearance of
features inSTD_FILES), the added underscores appear as * and the ad
letters appear inbold italics: last*character, last*double, last*real,
last*integer, last*string, put*boolean, put*character, put*double,
put*integer, put_new*line, put*real, put*string, read*character,
read*double, read*integer, read*line, read*real, read*stream, read*word,
to_next*line.(See sections 5.14 and 5.15.)

7.17 • Addition toEXCEPTIONSof a proceduredie that terminates the execution
cleanly with a given exit status, without triggering an exception. (See page 4

7.18 • In classSTRING, replacement of theadapt function by a more convenient
proceduremake_from_stringwhich descendants of the class can use
initialize a string-like object from a manifest string, as in !!t ● make_from_

§7 APPENDIX B: DIFFERENCES UP TO ELKS 95 58

e

string("THIS STRING"), where the type oft is a descendant ofSTRING. (See
page 35.)

7.19 • Similarly, addition toARRAY of a proceduremake_from_arrayallowing
initialization from a manifest array, as in !!a● make_from_array(<<a, b, c, d>>).

7.20 • Removal fromSTRINGof a number of features which some committe
members judged too specialized:mirror, mirrored, share, shared_with, item_
code, has, prepend, set, prune, prune_all. Renaming ofreplace_substringto
put_substring. Removal of fill_blanks, replaced byfill (applying to an
arbitrary character). Change of the result type ofout to STRING(rather than
like Current).

ure

r in
, in

sses
any
dex
me

ve no
er bug
8 INDEX

[This Index is not part of the Standard.]

8.1
This Index indicates the page of definition of every class and feat
appearing in the Required Flatshort Forms of section 5

8.2
Following the standard Eiffel conventions, feature names appea
lower-case italics and class names, when making up index entries
UPPER-CASE ITALICS . Operator functions appear underprefix and infix ;
for example division appears underinfix "/". This also applies to boolean
operators, which appear underinfix "and", infix "and then" and so on.

8.3
In a class entry, the class appears inUPPER-CASE ITALICS. Each
reference to a feature name is followed by the name of the class or cla
in which it is available, each with the corresponding page. To avoid
confusion with occurrences of the class name in its other role – as an in
entry pointing to the beginning of the class specification – the class na
in this case appears inUPPER-CASE ROMAN.

(ELKS 98 note: FrameMaker 5.5 acts so strange the font conventions don’t hold any more. I ha
idea what’s going on and have written to Frame customer support in the hope it is not yet anoth
of the new release but something stupid I am doing.)
abs
DOUBLE 30
INTEGER 24
REAL 27

ANY 15

append_boolean
STRING 36

append_character
STRING 36

append_double
STRING 37

append_integer
STRING 37

append_real
STRING 37

§8 INDEX 60
append_string
STRING 37

argument
ARGUMENTS 46

ARGUMENTS46

argument_count
ARGUMENTS 46

ARRAY33

assertion_violation
EXCEPTIONS 45

basic_store
STORABLE 43

BOOLEAN 20

Boolean_bits
PLATFORM 47

BOOLEAN_REF48

ceiling
DOUBLE 30
REAL 27

change_name
FILE 41

CHARACTER21

Character_bits
PLATFORM 47

CHARACTER_REF49

Check_instruction
EXCEPTIONS 45

Class_invariant
EXCEPTIONS 45

clone
GENERAL 14

close
FILE 41

code
CHARACTER 21

collecting
MEMORY 44

collection_off
MEMORY 44

collection_on
MEMORY 44

command_name
ARGUMENTS 46

COMPARABLE16

conforms_to
GENERAL 13

consistent_size
ARRAY 34

copy
ARRAY 34
GENERAL 14
STRING 38

count
ARRAY 33
FILE 40
STRING 35

deep_clone
GENERAL 14

deep_equal
GENERAL 13

default
GENERAL 14

default_output
STD_FILES 39

default_pointer
GENERAL 14

default_rescue
GENERAL 14

delete
FILE 42

developer_exception_name
EXCEPTIONS 45

INDEX §861
die
EXCEPTIONS 45

dispose
FILE 42
MEMORY 44

divisible
DOUBLE 30
INTEGER 24
NUMERIC 18
REAL 27

DOUBLE 29

Double_bits
PLATFORM 47

DOUBLE_REF 50

do_nothing
GENERAL 14

empty
FILE 40
STRING 36

empty_definition
STRING 38

end_of_file
FILE 41

enter
ARRAY 33

entry
ARRAY 33

equal
GENERAL 13

error
STD_FILES 39

exception
EXCEPTIONS 45

EXCEPTIONS45

exists
FILE 41

exponentiable
DOUBLE 30
INTEGER 24
NUMERIC 18
REAL 27

FILE 40

fill
STRING 37

floor
DOUBLE 30
REAL 27

force
ARRAY 33

from_c
STRING 35

full_collect
MEMORY 44

GENERAL 13

general_store
STORABLE 43

generating_type
GENERAL 13

generator
GENERAL 13

HASHABLE 17

hash_code
BOOLEAN 20
BOOLEAN_REF 48
CHARACTER 21
CHARACTER_REF 49
DOUBLE 29
DOUBLE_REF 50
HASHABLE 17
INTEGER 23
INTEGER_REF 51
POINTER 32

§8 INDEX 62
POINTER_REF 52
REAL 26
REAL_REF 53
STRING 35

head
STRING 37

id_object
GENERAL 13

Incorrect_inspect_value
EXCEPTIONS 45

independent_store
STORABLE 43

index_of
STRING 35

infix "and then"
BOOLEAN 20

infix "and"
BOOLEAN 20

infix "implies"
BOOLEAN 20

infix "or else"
BOOLEAN 20

infix "or"
BOOLEAN 20

infix "xor"
BOOLEAN 20

infix "-"
DOUBLE 30
INTEGER 24
NUMERIC 18
REAL 27

infix "*"
DOUBLE 30
INTEGER 24
NUMERIC 18
REAL 27

infix "+"
DOUBLE 30
INTEGER 24
NUMERIC 18
REAL 27

infix "/"
DOUBLE 30
INTEGER 24
NUMERIC 18
REAL 27

infix "//"
INTEGER 24

infix "<"
CHARACTER 21
COMPARABLE 16
DOUBLE 29
INTEGER 23
REAL 26
STRING 36

infix "<="
CHARACTER 21
COMPARABLE 16
DOUBLE 29
INTEGER 23
REAL 26
STRING 36

infix ">"
CHARACTER 21
COMPARABLE 16
DOUBLE 29
INTEGER 23
REAL 26
STRING 36

infix ">="
CHARACTER 21
COMPARABLE 16
DOUBLE 29
INTEGER 23
REAL 26
STRING 36

INDEX §863
infix "@"
STRING 35

infix "\"
INTEGER 24

infix "^"
DOUBLE 31
INTEGER 24
NUMERIC 18
REAL 28

input
STD_FILES 39

insert
STRING 37

insert_character
STRING 37

INTEGER 23

Integer_bits
PLATFORM 47

INTEGER_REF51

io
GENERAL 14

is_closed
FILE 41

is_developer_exception
EXCEPTIONS 45

is_equal
ARRAY 33
COMPARABLE 16
GENERAL 13
STRING 36

is_open_read
FILE 41

is_open_write
FILE 41

is_plain_text
FILE 41

is_readable
FILE 41

is_signal
EXCEPTIONS 45

is_writable
FILE 41

item
BOOLEAN_REF 48
CHARACTER_REF 49
DOUBLE_REF 50
INTEGER_REF 51
POINTER_REF 52
REAL_REF 53

item
ARRAY 33
STRING 35

last_character
FILE 41
STD_FILES 39

last_double
FILE 41
STD_FILES 39

last_integer
FILE 41
STD_FILES 39

last_real
FILE 41
STD_FILES 39

last_string
FILE 41
STD_FILES 39

left_adjust
STRING 37

Loop_invariant
EXCEPTIONS 45

Loop_variant
EXCEPTIONS 45

lower
ARRAY 33

§8 INDEX 64
make
ARRAY 33
FILE 40
STRING 35

make_create_read_write
FILE 40

make_from_array
ARRAY 33

make_from_string
STRING 35

make_open_append
FILE 40

make_open_read
FILE 40

make_open_read_write
FILE 40

make_open_write
FILE 40

max
CHARACTER 21
COMPARABLE 16
DOUBLE 29
INTEGER 23
REAL 26
STRING 36

Maximum_character_code
PLATFORM 47

Maximum_integer
PLATFORM 47

MEMORY 44

min
CHARACTER 21
COMPARABLE 16
DOUBLE 29
INTEGER 23
REAL 26
STRING 36

Minimum_character_code
PLATFORM 47

Minimum_integer
PLATFORM 47

name
FILE 40

name_exists
FILE 42

name_not_empty
FILE 42

non_negative_count
ARRAY 34
STRING 38

No_more_memory
EXCEPTIONS 45

NUMERIC 18

object_id
GENERAL 13

occurrences
STRING 35

one
DOUBLE 29
INTEGER 23
NUMERIC 18
REAL 26

open_read
FILE 41

open_read_append
FILE 41

open_read_write
FILE 41

open_write
FILE 41

out
BOOLEAN 20
CHARACTER 22

INDEX §865
DOUBLE 31
GENERAL 14
INTEGER 25
POINTER 32
REAL 28
STRING 38

output
STD_FILES 39

PLATFORM 47

POINTER 32

Pointer_bits
PLATFORM 47

POINTER_REF52

Postcondition
EXCEPTIONS 45

Precondition
EXCEPTIONS 45

prefix "not"
BOOLEAN 20

prefix "-"
DOUBLE 31
INTEGER 25
NUMERIC 18
REAL 28

prefix "+"
DOUBLE 31
INTEGER 25
NUMERIC 18
REAL 28

print
GENERAL 14

put
ARRAY 34
STRING 37

put_boolean
FILE 42
STD_FILES 39

put_character
FILE 42
STD_FILES 39

put_double
FILE 42
STD_FILES 39

put_integer
FILE 42
STD_FILES 39

put_new_line
STD_FILES 39

put_real
FILE 42
STD_FILES 39

put_string
FILE 42
STD_FILES 39

put_substring
STRING 37

raise
EXCEPTIONS 45

read_character
FILE 42
STD_FILES 39

read_double
FILE 42
STD_FILES 39

read_integer
FILE 42
STD_FILES 39

read_line
FILE 42
STD_FILES 39

read_real
FILE 42
STD_FILES 39

§8 INDEX 66
read_stream
FILE 42
STD_FILES 39

read_word
FILE 42

REAL 26

Real_bits
PLATFORM 47

REAL_REF53

remake
STRING 35

remove
STRING 37

resize
ARRAY 34
STRING 38

retrieved
STORABLE 43

right_adjust
STRING 37

rounded
DOUBLE 30
REAL 27

Routine_failure
EXCEPTIONS 45

same_type
GENERAL 13

set_error_default
STD_FILES 39

set_item
BOOLEAN_REF 48
CHARACTER_REF 49
DOUBLE_REF 50
INTEGER_REF 51
POINTER_REF 52
REAL_REF 53

set_output_default
STD_FILES 39

sign
DOUBLE 29
INTEGER 23
REAL 26

standard_clone
GENERAL 14

standard_copy
GENERAL 14

standard_default
STD_FILES 39

standard_equal
GENERAL 14

standard_is_equal
GENERAL 14

STD_FILES39

STORABLE43

STRING 35

stripped
GENERAL 13

substring
STRING 38

substring_index
STRING 35

tagged_out
GENERAL 14

tail
STRING 37

three_way_comparison
CHARACTER 21
COMPARABLE 16
DOUBLE 30
INTEGER 24
REAL 27
STRING 36

INDEX §867
to_boolean
STRING 38

to_c
ARRAY 34

to_double
STRING 38

to_integer
STRING 38

to_lower
STRING 38

to_next_line
FILE 41
STD_FILES 39

to_real
STRING 38

to_upper
STRING 38

truncated_to_integer
DOUBLE 30
REAL 27

truncated_to_real
DOUBLE 30

upper
ARRAY 33

valid_index
ARRAY 33
STRING 36

Void
GENERAL 14

Void_attached_to_expanded
EXCEPTIONS 45

Void_call_target
EXCEPTIONS 45

wipe_out
STRING 37

writable_if_extendible
FILE 42

zero
DOUBLE 29
INTEGER 23
NUMERIC 18
REAL 26

Symbols

"@"
ARRAY 33

§8 INDEX 68

	Contents
	0�� INTRODUCTION
	0.1
	0.2
	0.3

	1�� CONTENTS OF THIS STANDARD
	1.1 Definition: this Standard
	1.2 Scope of this Standard
	1.3 Other documents

	2�� COMPATIBILITY CONDITIONS
	2.1 Definitions
	2.1.1�� Required Classes
	2.1.2�� Required Flatshort Form
	2.1.3�� Flatshort Compatibility
	2.1.4�� Required Ancestry Links

	2.2 Kernel compatibility
	2.2.1�� Definition

	2.3 Flatshort Conventions
	2.3.1�� Definition

	2.4 Flatshort Compatibility
	2.4.1�� Definition

	3�� REQUIRED CLASSES
	4�� REQUIRED ANCESTRY LINKS
	5�� SHORT FORMS OF REQUIRED CLASSES
	5.1 Class �GENERAL
	feature -- Access
	feature -- Status report
	feature -- Comparison
	feature -- Duplication
	feature -- Basic operations
	feature -- Output

	5.2 Class �ANY
	5.3 Class �COMPARABLE
	feature -- Comparison

	5.4 Class �HASHABLE
	feature -- Access

	5.5 Class �NUMERIC
	feature -- Access
	feature -- Status report
	feature -- Basic operations

	5.6 Class �BOOLEAN
	feature -- Access
	feature -- Basic operations
	feature -- Output

	5.7 Class �CHARACTER
	feature -- Access
	feature -- Comparison
	feature -- Output

	5.8 Class �INTEGER
	feature -- Access
	feature -- Comparison
	feature -- Status report
	feature -- Basic operations
	feature -- Output

	5.9 Class �REAL
	feature -- Access
	feature -- Comparison
	feature -- Status report
	feature -- Conversion
	feature -- Basic operations
	feature -- Output

	5.10 Class �DOUBLE
	feature -- Access
	feature -- Comparison
	feature -- Status report
	feature -- Conversion
	feature -- Basic operations
	feature -- Output

	5.11 Class �POINTER
	feature -- Access
	feature -- Output

	5.12 Class �ARRAY
	feature -- Initialization
	feature -- Access
	feature -- Measurement
	feature -- Comparison
	feature -- Status report
	feature -- Element change
	feature -- Resizing
	feature -- Conversion
	feature -- Duplication

	5.13 Class �STRING
	feature -- Initialization
	feature -- Access
	feature -- Measurement
	feature -- Comparison
	feature -- Status report
	feature -- Element change
	feature -- Removal
	feature -- Resizing
	feature -- Conversion
	feature -- Duplication
	feature -- Output

	5.14 Class �STD_FILES
	feature -- Access
	feature -- Status report
	feature -- Element change
	feature -- Input

	5.15 Class �FILE
	feature -- Access
	feature -- Measurement
	feature -- Status report
	feature -- Status setting
	feature -- Cursor movement
	feature -- Element change
	feature -- Removal
	feature -- Input
	feature -- Output

	5.16 Class �STORABLE
	feature -- Access
	feature -- Element change

	5.17 Class �MEMORY
	feature -- Status report
	feature -- Status setting
	feature -- Removal

	5.18 Class �EXCEPTIONS
	feature -- Access
	feature -- Access
	feature -- Status report
	feature -- Basic operations

	5.19 Class �ARGUMENTS
	feature -- Access
	feature -- Measurement

	5.20 Class �PLATFORM
	feature -- Access

	5.21 Class �BOOLEAN_REF
	feature -- Access
	feature -- Element change

	5.22 Class �CHARACTER_REF
	feature -- Access
	feature -- Element change

	5.23 Class �DOUBLE_REF
	feature -- Access
	feature -- Element change

	5.24 Class �INTEGER_REF
	feature -- Access
	feature -- Element change

	5.25 Class �POINTER_REF
	feature -- Access
	feature -- Element change

	5.26 Class �REAL_REF
	feature -- Access
	feature -- Element change

	6�� APPENDIX A: THE KERNEL STANDARDIZATION PROCESS
	6.1 Why plan a process?
	6.2 Cycle time
	6.3 Vintages
	6.4 Yearly schedule
	6.5 Intermediate corrections
	6.6 Eiffel Kernel Supplier requirements

	7�� APPENDIX B: DIFFERENCES UP TO ELKS 95
	8�� INDEX
	8.1
	8.2
	8.3

